vllm.v1.metrics.perf ¶
Analytic flops/memory estimation module for transformer components, to help derive MFU (Model Flops Utilization) stats for a running model.
AttentionMetrics ¶
Bases: ComponentMetrics
Source code in vllm/v1/metrics/perf.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | |
get_write_bytes_breakdown ¶
get_write_bytes_breakdown(
ctx: ExecutionContext, per_gpu: bool = True
) -> dict[str, int]
Calculate write memory traffic for attention layers.
Source code in vllm/v1/metrics/perf.py
AttentionQuantizationConfigParser ¶
Bases: Parser
Parses quantization configuration for attention layers. Overrides: weight_byte_size
Source code in vllm/v1/metrics/perf.py
BaseAttentionConfigParser ¶
Bases: Parser
Parses attention-specific configuration. Provides: num_key_value_heads, head_dim, cache_byte_size
Source code in vllm/v1/metrics/perf.py
BaseConfigParser ¶
Bases: Parser
Parses base model configuration. Provides: vocab_size, hidden_size, num_attention_heads, num_hidden_layers, weight_byte_size, activation_byte_size, dp_size, tp_size, pp_size, enable_ep
Source code in vllm/v1/metrics/perf.py
BaseFfnConfigParser ¶
Bases: Parser
Parses FFN and MoE configuration. Provides: intermediate_size, num_experts, num_experts_per_tok, moe_intermediate_size, num_shared_experts, num_moe_layers
Source code in vllm/v1/metrics/perf.py
ComponentMetrics ¶
Bases: BaseModel, ABC
Each concrete ComponentMetrics class is associated with: - fields that are required for metric derivation (fields are specified/validated through pydantic model) - parser to parse VllmConfig into fields - metric methods that derive flops/bytes for a given execution context
Source code in vllm/v1/metrics/perf.py
from_vllm_config classmethod ¶
from_vllm_config(vllm_config: VllmConfig) -> Self
Instantiate this class from VllmConfig. Raises ValidationError if parsing fails.
Source code in vllm/v1/metrics/perf.py
get_parser abstractmethod classmethod ¶
get_parser() -> ParserChain
Return a ParserChain that provides values for all required fields. The returned parser chain must populate ParsedArgs with values for every field defined on this ComponentMetrics class. Missing fields will cause a ValidationError when from_vllm_config() is called. See individual Parser docstrings for which args they provide, and field comments on ComponentMetrics subclasses for which parser provides each field.
Source code in vllm/v1/metrics/perf.py
ExecutionContext dataclass ¶
Represents an execution context for a batch of requests.
This class aggregates statistics across multiple requests in a batch, separately tracking prefill and decode phases.
Example) - Batch with one full prefill (2048 tokens) and one decode (1 token, 8192 context): ctx = ExecutionContext() ctx.add(2048, 2048, is_prefill=True) ctx.add(1, 8192, is_prefill=False)
Source code in vllm/v1/metrics/perf.py
add ¶
Add a single request's statistics to this batch context.
Source code in vllm/v1/metrics/perf.py
from_single_request classmethod ¶
from_single_request(
num_tokens: int, context_len: int, is_prefill: bool
) -> ExecutionContext
Create an ExecutionContext from a single request.
This is a convenience method primarily for testing.
Source code in vllm/v1/metrics/perf.py
num_logits_tokens ¶
num_logits_tokens() -> int
Number of tokens that require logits computation (unembedding).
For prefill, only the last token per request needs logits. For decode, all tokens need logits.
Source code in vllm/v1/metrics/perf.py
FfnMetrics ¶
Bases: ComponentMetrics
Source code in vllm/v1/metrics/perf.py
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | |
get_num_flops_breakdown ¶
get_num_flops_breakdown(
ctx: ExecutionContext, per_gpu: bool = True
) -> dict[str, int]
Calculate flops breakdown for FFN layers.
Source code in vllm/v1/metrics/perf.py
get_read_bytes_breakdown ¶
get_read_bytes_breakdown(
ctx: ExecutionContext, per_gpu: bool = True
) -> dict[str, int]
Calculate read memory traffic for FFN layers.
Source code in vllm/v1/metrics/perf.py
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 | |
get_write_bytes_breakdown ¶
get_write_bytes_breakdown(
ctx: ExecutionContext, per_gpu: bool = True
) -> dict[str, int]
Calculate write memory traffic for FFN layers.
Source code in vllm/v1/metrics/perf.py
validate_moe_fields ¶
validate_moe_fields() -> Self
Validate that MoE-related fields are properly set when num_moe_layers > 0.
Source code in vllm/v1/metrics/perf.py
FfnParallelParser ¶
Bases: Parser
Parses FFN parallelism configuration.
Provides: ffn_tp_size, ffn_ep_size
Source code in vllm/v1/metrics/perf.py
FfnQuantizationConfigParser ¶
Bases: Parser
Parses quantization configuration for FFN layers.
Overrides: weight_byte_size
Source code in vllm/v1/metrics/perf.py
InterleaveMoeLayerStepParser ¶
Bases: Parser
Parses interleave_moe_layer_step field for models like Llama4.
Overrides: num_moe_layers
Source code in vllm/v1/metrics/perf.py
InvalidComponent ¶
Bases: Exception
Custom exception to indicate that a certain ComponentMetric is not applicable to the given VllmConfig.
ModelMetrics ¶
Source code in vllm/v1/metrics/perf.py
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 | |
__init__ ¶
__init__(vllm_config: VllmConfig) -> None
Parse vllm_config to instantiate metrics for each component. is_enabled() will return False if no component metrics could be instantiated.
Source code in vllm/v1/metrics/perf.py
get_step_perf_stats_per_gpu ¶
Calculate perf stats for the current step based on scheduled tokens.
Source code in vllm/v1/metrics/perf.py
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 | |
MoeLayerFreqParser ¶
Bases: Parser
Parses moe_layer_freq and first_k_dense_replace fields for models like Deepseek.
Overrides: num_moe_layers
Source code in vllm/v1/metrics/perf.py
ParsedArgs ¶
Syntactic sugar so that Parsers can use dot notations to access/update the parsed arguments.
e.g.) args = ParsedArgs() args.x = 3 args.y = args.x + 1
Source code in vllm/v1/metrics/perf.py
Parser ¶
Bases: Protocol
Source code in vllm/v1/metrics/perf.py
parse ¶
parse(
args: ParsedArgs, vllm_config: VllmConfig
) -> ParsedArgs
Parse the vllm config and update the current ParsedArgs and pass it on. If the parser isn't applicable to the vllm_config, it will do nothing.
ParserChain ¶
Applies chain of parser in a sequential order. Later parsers might overwrite results from previous parsers, so parsers should be chained in the appropriate order if they are not mutually exclusive.
Source code in vllm/v1/metrics/perf.py
UnembedMetrics ¶
Bases: ComponentMetrics
Source code in vllm/v1/metrics/perf.py
get_num_flops_breakdown ¶
get_num_flops_breakdown(
ctx: ExecutionContext, per_gpu: bool = True
) -> dict[str, int]
Calculate flops breakdown for unembedding layer.
Source code in vllm/v1/metrics/perf.py
get_read_bytes_breakdown ¶
get_read_bytes_breakdown(
ctx: ExecutionContext, per_gpu: bool = True
) -> dict[str, int]
Calculate read memory traffic for unembedding layer.
Source code in vllm/v1/metrics/perf.py
get_required ¶
Get an attr from an object, or throw a InvalidComponentError if it's not set.
Source code in vllm/v1/metrics/perf.py
getattr_from_list ¶
Try to get the first attr that exists in the object from a list of attrs. Otherwise return None.