class GDNAttentionMetadataBuilder(AttentionMetadataBuilder[GDNAttentionMetadata]):
_cudagraph_support = AttentionCGSupport.UNIFORM_BATCH
reorder_batch_threshold: int = 1
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
assert isinstance(kv_cache_spec, MambaSpec)
self.vllm_config = vllm_config
self.compilation_config = vllm_config.compilation_config
self.speculative_config = vllm_config.speculative_config
self.kv_cache_spec = kv_cache_spec
if self.speculative_config:
assert self.speculative_config.num_speculative_tokens is not None
self.num_spec: int = self.speculative_config.num_speculative_tokens
else:
self.num_spec = 0
self.use_spec_decode = self.num_spec > 0
self._init_reorder_batch_threshold(1, self.use_spec_decode)
self.use_full_cuda_graph = (
self.compilation_config.cudagraph_mode.has_full_cudagraphs()
)
self.decode_cudagraph_max_bs = (
self.vllm_config.scheduler_config.max_num_seqs * (self.num_spec + 1)
)
if self.compilation_config.max_cudagraph_capture_size is not None:
self.decode_cudagraph_max_bs = min(
self.decode_cudagraph_max_bs,
self.compilation_config.max_cudagraph_capture_size,
)
self.spec_state_indices_tensor = torch.empty(
(self.decode_cudagraph_max_bs, self.num_spec + 1),
dtype=torch.int32,
device=device,
)
self.non_spec_state_indices_tensor = torch.empty(
(self.decode_cudagraph_max_bs,),
dtype=torch.int32,
device=device,
)
self.spec_sequence_masks = torch.empty(
(self.decode_cudagraph_max_bs,),
dtype=torch.bool,
device=device,
)
self.spec_token_indx = torch.empty(
(self.decode_cudagraph_max_bs * (self.num_spec + 1),),
dtype=torch.int32,
device=device,
)
self.non_spec_token_indx = torch.empty(
(self.decode_cudagraph_max_bs * (self.num_spec + 1),),
dtype=torch.int32,
device=device,
)
self.spec_query_start_loc = torch.empty(
(self.decode_cudagraph_max_bs + 1,),
dtype=torch.int32,
device=device,
)
self.non_spec_query_start_loc = torch.empty(
(self.decode_cudagraph_max_bs + 1,),
dtype=torch.int32,
device=device,
)
self.num_accepted_tokens = torch.empty(
(self.decode_cudagraph_max_bs,),
dtype=torch.int32,
device=device,
)
def build( # type: ignore[override]
self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
num_accepted_tokens: torch.Tensor | None = None,
num_decode_draft_tokens_cpu: torch.Tensor | None = None,
fast_build: bool = False,
) -> GDNAttentionMetadata:
m = common_attn_metadata
query_start_loc = m.query_start_loc
query_start_loc_cpu = m.query_start_loc_cpu
context_lens_tensor = m.compute_num_computed_tokens()
nums_dict, batch_ptr, token_chunk_offset_ptr = None, None, None
block_table_tensor = mamba_get_block_table_tensor(
m.block_table_tensor,
m.seq_lens,
self.kv_cache_spec,
self.vllm_config.cache_config.mamba_cache_mode,
)
spec_sequence_masks_cpu: torch.Tensor | None = None
if (
not self.use_spec_decode
or num_decode_draft_tokens_cpu is None
or num_decode_draft_tokens_cpu[num_decode_draft_tokens_cpu >= 0]
.sum()
.item()
== 0
):
spec_sequence_masks = None
num_spec_decodes = 0
else:
spec_sequence_masks_cpu = num_decode_draft_tokens_cpu >= 0
num_spec_decodes = spec_sequence_masks_cpu.sum().item()
if num_spec_decodes == 0:
spec_sequence_masks = None
spec_sequence_masks_cpu = None
else:
spec_sequence_masks = spec_sequence_masks_cpu.to(
query_start_loc.device, non_blocking=True
)
if spec_sequence_masks is None:
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
split_decodes_and_prefills(m, decode_threshold=1)
)
num_spec_decode_tokens = 0
spec_token_indx = None
non_spec_token_indx = None
spec_state_indices_tensor = None
non_spec_state_indices_tensor = block_table_tensor[:, 0]
spec_query_start_loc = None
non_spec_query_start_loc = query_start_loc
non_spec_query_start_loc_cpu = query_start_loc_cpu
num_accepted_tokens = None
else:
query_lens = query_start_loc[1:] - query_start_loc[:-1]
assert spec_sequence_masks_cpu is not None
query_lens_cpu = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
non_spec_query_lens = query_lens[~spec_sequence_masks]
num_decodes = (non_spec_query_lens == 1).sum().item()
# Exclude zero-length padded sequences from prefill count.
num_zero_len = (non_spec_query_lens == 0).sum().item()
num_prefills = non_spec_query_lens.size(0) - num_decodes - num_zero_len
num_decode_tokens = num_decodes
num_prefill_tokens = non_spec_query_lens.sum().item() - num_decode_tokens
num_spec_decode_tokens = (
query_lens.sum().item() - num_prefill_tokens - num_decode_tokens
)
if num_prefills == 0 and num_decodes == 0:
spec_token_size = min(
num_spec_decodes * (self.num_spec + 1),
query_start_loc[-1].item(),
)
spec_token_indx = torch.arange(
spec_token_size,
dtype=torch.int32,
device=query_start_loc.device,
)
non_spec_token_indx = torch.empty(
0, dtype=torch.int32, device=query_start_loc.device
)
# Filter by spec_sequence_masks to exclude padded sequences
spec_state_indices_tensor = block_table_tensor[
spec_sequence_masks, : self.num_spec + 1
]
non_spec_state_indices_tensor = None
# Padded sequences are always at the back, so the first
# num_spec_decodes + 1 entries of query_start_loc already
# contain the correct cumulative token counts.
spec_query_start_loc = query_start_loc[: num_spec_decodes + 1]
non_spec_query_start_loc = None
non_spec_query_start_loc_cpu = None
else:
spec_token_masks = torch.repeat_interleave(
spec_sequence_masks, query_lens
)
index = torch.argsort(spec_token_masks, stable=True)
num_non_spec_tokens = num_prefill_tokens + num_decode_tokens
non_spec_token_indx = index[:num_non_spec_tokens]
spec_token_indx = index[num_non_spec_tokens:]
spec_state_indices_tensor = block_table_tensor[
spec_sequence_masks, : self.num_spec + 1
]
non_spec_state_indices_tensor = block_table_tensor[
~spec_sequence_masks, 0
]
spec_query_start_loc = torch.zeros(
num_spec_decodes + 1,
dtype=torch.int32,
device=query_start_loc.device,
)
torch.cumsum(
query_lens[spec_sequence_masks], dim=0, out=spec_query_start_loc[1:]
)
non_spec_query_start_loc = torch.zeros(
query_lens.size(0) - num_spec_decodes + 1,
dtype=torch.int32,
device=query_start_loc.device,
)
torch.cumsum(
query_lens[~spec_sequence_masks],
dim=0,
out=non_spec_query_start_loc[1:],
)
non_spec_query_start_loc_cpu = torch.zeros(
query_lens_cpu.size(0) - num_spec_decodes + 1,
dtype=torch.int32,
)
torch.cumsum(
query_lens_cpu[~spec_sequence_masks_cpu],
dim=0,
out=non_spec_query_start_loc_cpu[1:],
)
assert num_accepted_tokens is not None
num_accepted_tokens = num_accepted_tokens[spec_sequence_masks]
if num_prefills > 0:
has_initial_state = context_lens_tensor > 0
if spec_sequence_masks is not None:
has_initial_state = has_initial_state[~spec_sequence_masks]
assert non_spec_query_start_loc_cpu is not None
nums_dict, batch_ptr, token_chunk_offset_ptr = (
compute_causal_conv1d_metadata(
non_spec_query_start_loc_cpu,
device=query_start_loc.device,
)
)
else:
has_initial_state = None
# Function code counted on either presency non-spec decode or spec decode,
# but not both.
assert not (num_decodes > 0 and num_spec_decodes > 0), (
f"num_decodes: {num_decodes}, num_spec_decodes: {num_spec_decodes}"
)
# Prepare tensors for cudagraph
# Note: m.num_actual_tokens is already padded by the model runner for CUDAGraph
batch_size = m.num_actual_tokens
if (
self.use_full_cuda_graph
and num_prefills == 0
and num_decodes == 0
and num_spec_decodes <= self.decode_cudagraph_max_bs
and num_spec_decode_tokens <= self.decode_cudagraph_max_bs
):
self.spec_state_indices_tensor[:num_spec_decodes].copy_(
spec_state_indices_tensor, non_blocking=True
)
spec_state_indices_tensor = self.spec_state_indices_tensor[:batch_size]
spec_state_indices_tensor[num_spec_decodes:].fill_(PAD_SLOT_ID)
self.spec_sequence_masks[:num_spec_decodes].copy_(
spec_sequence_masks[:num_spec_decodes], non_blocking=True
)
spec_sequence_masks = self.spec_sequence_masks[:batch_size]
spec_sequence_masks[num_spec_decodes:].fill_(False)
assert non_spec_token_indx is not None and spec_token_indx is not None
self.non_spec_token_indx[: non_spec_token_indx.size(0)].copy_(
non_spec_token_indx, non_blocking=True
)
non_spec_token_indx = self.non_spec_token_indx[
: non_spec_token_indx.size(0)
]
self.spec_token_indx[: spec_token_indx.size(0)].copy_(
spec_token_indx, non_blocking=True
)
spec_token_indx = self.spec_token_indx[: spec_token_indx.size(0)]
self.spec_query_start_loc[: num_spec_decodes + 1].copy_(
spec_query_start_loc, non_blocking=True
)
spec_num_query_tokens = spec_query_start_loc[-1] # type: ignore[index]
spec_query_start_loc = self.spec_query_start_loc[: batch_size + 1]
spec_query_start_loc[num_spec_decodes + 1 :].fill_(spec_num_query_tokens)
self.num_accepted_tokens[:num_spec_decodes].copy_(
num_accepted_tokens, non_blocking=True
)
num_accepted_tokens = self.num_accepted_tokens[:batch_size]
num_accepted_tokens[num_spec_decodes:].fill_(1)
if (
self.use_full_cuda_graph
and num_prefills == 0
and num_spec_decodes == 0
and num_decodes <= self.decode_cudagraph_max_bs
):
self.non_spec_state_indices_tensor[:num_decodes].copy_(
non_spec_state_indices_tensor, non_blocking=True
)
non_spec_state_indices_tensor = self.non_spec_state_indices_tensor[
:batch_size
]
non_spec_state_indices_tensor[num_decodes:].fill_(PAD_SLOT_ID)
self.non_spec_query_start_loc[: num_decodes + 1].copy_(
non_spec_query_start_loc, non_blocking=True
)
non_spec_num_query_tokens = non_spec_query_start_loc[-1] # type: ignore[index]
non_spec_query_start_loc = self.non_spec_query_start_loc[: batch_size + 1]
non_spec_query_start_loc[num_decodes + 1 :].fill_(non_spec_num_query_tokens)
attn_metadata = GDNAttentionMetadata(
num_prefills=num_prefills,
num_prefill_tokens=num_prefill_tokens,
num_decodes=num_decodes,
num_decode_tokens=num_decode_tokens,
num_spec_decodes=num_spec_decodes,
num_spec_decode_tokens=num_spec_decode_tokens,
num_actual_tokens=m.num_actual_tokens,
has_initial_state=has_initial_state,
spec_query_start_loc=spec_query_start_loc,
non_spec_query_start_loc=non_spec_query_start_loc,
spec_state_indices_tensor=spec_state_indices_tensor,
non_spec_state_indices_tensor=non_spec_state_indices_tensor,
spec_sequence_masks=spec_sequence_masks,
spec_token_indx=spec_token_indx,
non_spec_token_indx=non_spec_token_indx,
num_accepted_tokens=num_accepted_tokens,
nums_dict=nums_dict,
batch_ptr=batch_ptr,
token_chunk_offset_ptr=token_chunk_offset_ptr,
)
return attn_metadata
def build_for_cudagraph_capture(
self, common_attn_metadata: CommonAttentionMetadata
):
"""
This method builds the metadata for full cudagraph capture.
Currently, only decode is supported for full cudagraphs with Mamba.
"""
m = common_attn_metadata
assert (
m.num_reqs <= self.decode_cudagraph_max_bs
and m.num_actual_tokens <= self.decode_cudagraph_max_bs
), (
f"GDN only supports decode-only full CUDAGraph capture. "
f"Make sure batch size ({m.num_reqs}) <= "
f"cudagraph capture sizes ({self.decode_cudagraph_max_bs}), "
f"and number of tokens ({m.num_actual_tokens}) <= "
f"cudagraph capture sizes ({self.decode_cudagraph_max_bs})."
)
num_accepted_tokens = torch.diff(m.query_start_loc)
num_decode_draft_tokens_cpu = (num_accepted_tokens - 1).cpu()
return self.build(0, m, num_accepted_tokens, num_decode_draft_tokens_cpu)