Skip to content

vllm.transformers_utils.processors

Multi-modal processors may be defined in this directory for the following reasons:

  • There is no processing file defined by HF Hub or Transformers library.
  • There is a need to override the existing processor to support vLLM.

Modules:

Name Description
bagel

BAGEL processor for image and text inputs.

deepseek_ocr
deepseek_vl2
funasr_processor
hunyuan_vl
hunyuan_vl_image

Image processor class for HunYuanVL.

ovis
ovis2_5
qwen3_asr

BagelProcessor

Bases: ProcessorMixin

Constructs a BAGEL processor which wraps a SigLIP image processor and a Qwen2 tokenizer.

Source code in vllm/transformers_utils/processors/bagel.py
class BagelProcessor(ProcessorMixin):
    """
    Constructs a BAGEL processor which wraps a
    SigLIP image processor and a Qwen2 tokenizer.
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "SiglipImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __call__(
        self,
        text: TextInput
        | PreTokenizedInput
        | list[TextInput]
        | list[PreTokenizedInput] = None,
        images: ImageInput = None,
        **kwargs: Unpack[BagelProcessorKwargs],
    ):
        """
        Main method to prepare for the model one or several sequences(s) and image(s).
        """
        output_kwargs = self._merge_kwargs(
            BagelProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if images is not None:
            # Process images with the image processor
            pixel_values = self.image_processor(
                images, **output_kwargs["images_kwargs"]
            )
        else:
            pixel_values = {}

        text_inputs = (
            self.tokenizer(text, **output_kwargs["text_kwargs"])
            if text is not None
            else {}
        )

        return BatchFeature(data={**pixel_values, **text_inputs})

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's batch_decode.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's decode.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

__call__

__call__(
    text: TextInput
    | PreTokenizedInput
    | list[TextInput]
    | list[PreTokenizedInput] = None,
    images: ImageInput = None,
    **kwargs: Unpack[BagelProcessorKwargs],
)

Main method to prepare for the model one or several sequences(s) and image(s).

Source code in vllm/transformers_utils/processors/bagel.py
def __call__(
    self,
    text: TextInput
    | PreTokenizedInput
    | list[TextInput]
    | list[PreTokenizedInput] = None,
    images: ImageInput = None,
    **kwargs: Unpack[BagelProcessorKwargs],
):
    """
    Main method to prepare for the model one or several sequences(s) and image(s).
    """
    output_kwargs = self._merge_kwargs(
        BagelProcessorKwargs,
        tokenizer_init_kwargs=self.tokenizer.init_kwargs,
        **kwargs,
    )

    if images is not None:
        # Process images with the image processor
        pixel_values = self.image_processor(
            images, **output_kwargs["images_kwargs"]
        )
    else:
        pixel_values = {}

    text_inputs = (
        self.tokenizer(text, **output_kwargs["text_kwargs"])
        if text is not None
        else {}
    )

    return BatchFeature(data={**pixel_values, **text_inputs})

batch_decode

batch_decode(*args, **kwargs)

This method forwards all its arguments to Qwen2TokenizerFast's batch_decode.

Source code in vllm/transformers_utils/processors/bagel.py
def batch_decode(self, *args, **kwargs):
    """
    This method forwards all its arguments to Qwen2TokenizerFast's batch_decode.
    """
    return self.tokenizer.batch_decode(*args, **kwargs)

decode

decode(*args, **kwargs)

This method forwards all its arguments to Qwen2TokenizerFast's decode.

Source code in vllm/transformers_utils/processors/bagel.py
def decode(self, *args, **kwargs):
    """
    This method forwards all its arguments to Qwen2TokenizerFast's decode.
    """
    return self.tokenizer.decode(*args, **kwargs)

DeepseekVLV2Processor

Bases: ProcessorMixin

Source code in vllm/transformers_utils/processors/deepseek_vl2.py
class DeepseekVLV2Processor(ProcessorMixin):
    tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
    attributes = ["tokenizer"]

    def __init__(
        self,
        tokenizer: LlamaTokenizerFast,
        candidate_resolutions: tuple[tuple[int, int]],
        patch_size: int,
        downsample_ratio: int,
        image_mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
        image_std: tuple[float, float, float] = (0.5, 0.5, 0.5),
        normalize: bool = True,
        image_token: str = "<image>",
        pad_token: str = "<|▁pad▁|>",
        add_special_token: bool = False,
        sft_format: str = "deepseek",
        mask_prompt: bool = True,
        ignore_id: int = -100,
        **kwargs,
    ):
        self.candidate_resolutions = candidate_resolutions
        self.image_size = candidate_resolutions[0][0]
        self.patch_size = patch_size
        self.image_mean = image_mean
        self.image_std = image_std
        self.normalize = normalize
        self.downsample_ratio = downsample_ratio

        self.image_transform = ImageTransform(
            mean=image_mean, std=image_std, normalize=normalize
        )
        self.tokenizer = tokenizer
        self.tokenizer.padding_side = "left"  # must set this,padding side with make a difference in batch inference

        # add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
        if tokenizer.pad_token is None:
            self.tokenizer.add_special_tokens({"pad_token": pad_token})

        # add image token
        image_token_id = self.tokenizer.vocab.get(image_token)
        if image_token_id is None:
            special_tokens = [image_token]
            special_tokens_dict = {"additional_special_tokens": special_tokens}
            self.tokenizer.add_special_tokens(special_tokens_dict)
        self.image_token_id = self.tokenizer.vocab.get(image_token)

        # add five special tokens for grounding-related tasks
        # <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
        special_tokens = ["<|ref|>", "<|/ref|>", "<|det|>", "<|/det|>", "<|grounding|>"]
        special_tokens_dict = {"additional_special_tokens": special_tokens}
        self.tokenizer.add_special_tokens(special_tokens_dict)

        # add special tokens for SFT data
        special_tokens = ["<|User|>", "<|Assistant|>"]
        special_tokens_dict = {"additional_special_tokens": special_tokens}
        self.tokenizer.add_special_tokens(special_tokens_dict)

        self.image_token = image_token
        self.pad_token = pad_token
        self.add_special_token = add_special_token
        self.sft_format = sft_format
        self.mask_prompt = mask_prompt
        self.ignore_id = ignore_id

        super().__init__(
            tokenizer,
            **kwargs,
        )

    def select_best_resolution(self, image_size):
        # used for cropping
        original_width, original_height = image_size
        best_fit = None
        max_effective_resolution = 0
        min_wasted_resolution = float("inf")

        for width, height in self.candidate_resolutions:
            scale = min(width / original_width, height / original_height)
            downscaled_width, downscaled_height = (
                int(original_width * scale),
                int(original_height * scale),
            )
            effective_resolution = min(
                downscaled_width * downscaled_height, original_width * original_height
            )
            wasted_resolution = (width * height) - effective_resolution

            if effective_resolution > max_effective_resolution or (
                effective_resolution == max_effective_resolution
                and wasted_resolution < min_wasted_resolution
            ):
                max_effective_resolution = effective_resolution
                min_wasted_resolution = wasted_resolution
                best_fit = (width, height)

        return best_fit

    @property
    def bos_id(self):
        return self.tokenizer.bos_token_id

    @property
    def eos_id(self):
        return self.tokenizer.eos_token_id

    @property
    def pad_id(self):
        return self.tokenizer.pad_token_id

    def encode(self, text: str, bos: bool = True, eos: bool = False):
        t = self.tokenizer.encode(text, add_special_tokens=False)

        if bos:
            t = [self.bos_id] + t
        if eos:
            t = t + [self.eos_id]

        return t

    def decode(self, t: list[int], **kwargs) -> str:
        return self.tokenizer.decode(t, **kwargs)

    def process_one(
        self,
        prompt: str,
        images: list[Image.Image],
        inference_mode: bool = True,
        **kwargs: Any,
    ):
        """

        Args:
            prompt (str): the formatted prompt;
            images (list[ImageType]): the list of images;
            inference_mode (bool): if True, then remove the last eos token;
            **kwargs: Additional keyword arguments.

        Returns:
            outputs (BaseProcessorOutput): the output of the processor,
                - input_ids (torch.LongTensor): [N + image tokens]
                - target_ids (torch.LongTensor): [N + image tokens]
                - pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
                - image_id (int): the id of the image token
                - num_image_tokens (list[int]): the number of image tokens
        """

        assert prompt is not None and images is not None, (
            "prompt and images must be used at the same time."
        )

        sft_format = prompt
        (
            tokenized_str,
            images_list,
            images_seq_mask,
            images_spatial_crop,
            num_image_tokens,
        ) = self.tokenize_with_images(
            sft_format, images, bos=True, eos=True, cropping=len(images) <= 2
        )
        masked_tokenized_str = []
        for token_index in tokenized_str:
            if token_index != self.image_token_id:
                masked_tokenized_str.append(token_index)
            else:
                masked_tokenized_str.append(self.ignore_id)

        assert (
            len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
        ), (
            f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
            f"imags_seq_mask's length {len(images_seq_mask)}, are not equal"
        )

        input_ids = torch.LongTensor(tokenized_str)
        target_ids = torch.LongTensor(masked_tokenized_str)
        images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)

        # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
        target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
            self.ignore_id
        )
        input_ids[input_ids < 0] = self.pad_id

        if inference_mode:
            # Remove the ending eos token
            assert input_ids[-1] == self.eos_id
            input_ids = input_ids[:-1]
            target_ids = target_ids[:-1]
            images_seq_mask = images_seq_mask[:-1]

        if len(images_list) == 0:
            pixel_values = torch.zeros((1, 3, self.image_size, self.image_size))
            images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
        else:
            pixel_values = torch.stack(images_list, dim=0)
            images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)

        input_ids = input_ids.unsqueeze(0)

        prepare = BatchFeature(
            data=dict(
                input_ids=input_ids,
                pixel_values=pixel_values,
                images_seq_mask=images_seq_mask,
                images_spatial_crop=images_spatial_crop,
                num_image_tokens=num_image_tokens,
            ),
            tensor_type="pt",
        )
        return prepare

    def __call__(
        self,
        *,
        text: str,
        images: list[Image.Image],
        inference_mode: bool = True,
        **kwargs: Any,
    ):
        """

        Args:
            text (str): the formatted prompt;
            images (list[ImageType]): the list of images;
            inference_mode (bool): if True, then remove the last eos token;
            **kwargs:

        Returns:
            outputs (BaseProcessorOutput): the output of the processor,
                - input_ids (torch.LongTensor): [N + image tokens]
                - images (torch.FloatTensor): [n_images, 3, H, W]
                - image_id (int): the id of the image token
                - num_image_tokens (list[int]): the number of image tokens
        """

        prepare = self.process_one(
            prompt=text,
            images=images,
            inference_mode=inference_mode,
        )

        return prepare

    def tokenize_with_images(
        self,
        conversation: str,
        images: list[Image.Image],
        bos: bool = True,
        eos: bool = True,
        cropping: bool = True,
    ):
        """Tokenize text with <image> tags."""
        assert conversation.count(self.image_token) == len(images)
        text_splits = conversation.split(self.image_token)
        images_list, images_seq_mask, images_spatial_crop = [], [], []
        num_image_tokens = []
        tokenized_str = []
        for text_sep, image in zip(text_splits, images):
            """encode text_sep"""
            tokenized_sep = self.encode(text_sep, bos=False, eos=False)
            tokenized_str += tokenized_sep
            images_seq_mask += [False] * len(tokenized_sep)

            """select best resolution for anyres"""
            if cropping:
                best_width, best_height = self.select_best_resolution(image.size)
            else:
                best_width, best_height = self.image_size, self.image_size

            """process the global view"""
            global_view = ImageOps.pad(
                image,
                (self.image_size, self.image_size),
                color=tuple(int(x * 255) for x in self.image_transform.mean),
            )
            images_list.append(self.image_transform(global_view))

            """process the local views"""
            local_view = ImageOps.pad(
                image,
                (best_width, best_height),
                color=tuple(int(x * 255) for x in self.image_transform.mean),
            )
            for i in range(0, best_height, self.image_size):
                for j in range(0, best_width, self.image_size):
                    images_list.append(
                        self.image_transform(
                            local_view.crop(
                                (j, i, j + self.image_size, i + self.image_size)
                            )
                        )
                    )

            """record height / width crop num"""
            num_width_tiles, num_height_tiles = (
                best_width // self.image_size,
                best_height // self.image_size,
            )
            images_spatial_crop.append([num_width_tiles, num_height_tiles])

            """add image tokens"""
            h = w = math.ceil(
                (self.image_size // self.patch_size) / self.downsample_ratio
            )
            # global views tokens h * (w + 1), 1 is for line separator
            tokenized_image = [self.image_token_id] * h * (w + 1)
            # add a separator between global and local views
            tokenized_image += [self.image_token_id]
            # local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
            tokenized_image += (
                [self.image_token_id]
                * (num_height_tiles * h)
                * (num_width_tiles * w + 1)
            )

            tokenized_str += tokenized_image
            images_seq_mask += [True] * len(tokenized_image)
            num_image_tokens.append(len(tokenized_image))

        """process the last text split"""
        tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
        tokenized_str += tokenized_sep
        images_seq_mask += [False] * len(tokenized_sep)

        """add the bos and eos tokens"""
        if bos:
            tokenized_str = [self.bos_id] + tokenized_str
            images_seq_mask = [False] + images_seq_mask
        if eos:
            tokenized_str = tokenized_str + [self.eos_id]
            images_seq_mask = images_seq_mask + [False]

        assert len(tokenized_str) == len(images_seq_mask), (
            f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
        )

        return (
            tokenized_str,
            images_list,
            images_seq_mask,
            images_spatial_crop,
            num_image_tokens,
        )

__call__

__call__(
    *,
    text: str,
    images: list[Image],
    inference_mode: bool = True,
    **kwargs: Any,
)

Parameters:

Name Type Description Default
text str

the formatted prompt;

required
images list[ImageType]

the list of images;

required
inference_mode bool

if True, then remove the last eos token;

True
**kwargs Any
{}

Returns:

Name Type Description
outputs BaseProcessorOutput

the output of the processor, - input_ids (torch.LongTensor): [N + image tokens] - images (torch.FloatTensor): [n_images, 3, H, W] - image_id (int): the id of the image token - num_image_tokens (list[int]): the number of image tokens

Source code in vllm/transformers_utils/processors/deepseek_vl2.py
def __call__(
    self,
    *,
    text: str,
    images: list[Image.Image],
    inference_mode: bool = True,
    **kwargs: Any,
):
    """

    Args:
        text (str): the formatted prompt;
        images (list[ImageType]): the list of images;
        inference_mode (bool): if True, then remove the last eos token;
        **kwargs:

    Returns:
        outputs (BaseProcessorOutput): the output of the processor,
            - input_ids (torch.LongTensor): [N + image tokens]
            - images (torch.FloatTensor): [n_images, 3, H, W]
            - image_id (int): the id of the image token
            - num_image_tokens (list[int]): the number of image tokens
    """

    prepare = self.process_one(
        prompt=text,
        images=images,
        inference_mode=inference_mode,
    )

    return prepare

process_one

process_one(
    prompt: str,
    images: list[Image],
    inference_mode: bool = True,
    **kwargs: Any,
)

Parameters:

Name Type Description Default
prompt str

the formatted prompt;

required
images list[ImageType]

the list of images;

required
inference_mode bool

if True, then remove the last eos token;

True
**kwargs Any

Additional keyword arguments.

{}

Returns:

Name Type Description
outputs BaseProcessorOutput

the output of the processor, - input_ids (torch.LongTensor): [N + image tokens] - target_ids (torch.LongTensor): [N + image tokens] - pixel_values (torch.FloatTensor): [n_patches, 3, H, W] - image_id (int): the id of the image token - num_image_tokens (list[int]): the number of image tokens

Source code in vllm/transformers_utils/processors/deepseek_vl2.py
def process_one(
    self,
    prompt: str,
    images: list[Image.Image],
    inference_mode: bool = True,
    **kwargs: Any,
):
    """

    Args:
        prompt (str): the formatted prompt;
        images (list[ImageType]): the list of images;
        inference_mode (bool): if True, then remove the last eos token;
        **kwargs: Additional keyword arguments.

    Returns:
        outputs (BaseProcessorOutput): the output of the processor,
            - input_ids (torch.LongTensor): [N + image tokens]
            - target_ids (torch.LongTensor): [N + image tokens]
            - pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
            - image_id (int): the id of the image token
            - num_image_tokens (list[int]): the number of image tokens
    """

    assert prompt is not None and images is not None, (
        "prompt and images must be used at the same time."
    )

    sft_format = prompt
    (
        tokenized_str,
        images_list,
        images_seq_mask,
        images_spatial_crop,
        num_image_tokens,
    ) = self.tokenize_with_images(
        sft_format, images, bos=True, eos=True, cropping=len(images) <= 2
    )
    masked_tokenized_str = []
    for token_index in tokenized_str:
        if token_index != self.image_token_id:
            masked_tokenized_str.append(token_index)
        else:
            masked_tokenized_str.append(self.ignore_id)

    assert (
        len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
    ), (
        f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
        f"imags_seq_mask's length {len(images_seq_mask)}, are not equal"
    )

    input_ids = torch.LongTensor(tokenized_str)
    target_ids = torch.LongTensor(masked_tokenized_str)
    images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)

    # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
    target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
        self.ignore_id
    )
    input_ids[input_ids < 0] = self.pad_id

    if inference_mode:
        # Remove the ending eos token
        assert input_ids[-1] == self.eos_id
        input_ids = input_ids[:-1]
        target_ids = target_ids[:-1]
        images_seq_mask = images_seq_mask[:-1]

    if len(images_list) == 0:
        pixel_values = torch.zeros((1, 3, self.image_size, self.image_size))
        images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
    else:
        pixel_values = torch.stack(images_list, dim=0)
        images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)

    input_ids = input_ids.unsqueeze(0)

    prepare = BatchFeature(
        data=dict(
            input_ids=input_ids,
            pixel_values=pixel_values,
            images_seq_mask=images_seq_mask,
            images_spatial_crop=images_spatial_crop,
            num_image_tokens=num_image_tokens,
        ),
        tensor_type="pt",
    )
    return prepare

tokenize_with_images

tokenize_with_images(
    conversation: str,
    images: list[Image],
    bos: bool = True,
    eos: bool = True,
    cropping: bool = True,
)

Tokenize text with tags.

Source code in vllm/transformers_utils/processors/deepseek_vl2.py
def tokenize_with_images(
    self,
    conversation: str,
    images: list[Image.Image],
    bos: bool = True,
    eos: bool = True,
    cropping: bool = True,
):
    """Tokenize text with <image> tags."""
    assert conversation.count(self.image_token) == len(images)
    text_splits = conversation.split(self.image_token)
    images_list, images_seq_mask, images_spatial_crop = [], [], []
    num_image_tokens = []
    tokenized_str = []
    for text_sep, image in zip(text_splits, images):
        """encode text_sep"""
        tokenized_sep = self.encode(text_sep, bos=False, eos=False)
        tokenized_str += tokenized_sep
        images_seq_mask += [False] * len(tokenized_sep)

        """select best resolution for anyres"""
        if cropping:
            best_width, best_height = self.select_best_resolution(image.size)
        else:
            best_width, best_height = self.image_size, self.image_size

        """process the global view"""
        global_view = ImageOps.pad(
            image,
            (self.image_size, self.image_size),
            color=tuple(int(x * 255) for x in self.image_transform.mean),
        )
        images_list.append(self.image_transform(global_view))

        """process the local views"""
        local_view = ImageOps.pad(
            image,
            (best_width, best_height),
            color=tuple(int(x * 255) for x in self.image_transform.mean),
        )
        for i in range(0, best_height, self.image_size):
            for j in range(0, best_width, self.image_size):
                images_list.append(
                    self.image_transform(
                        local_view.crop(
                            (j, i, j + self.image_size, i + self.image_size)
                        )
                    )
                )

        """record height / width crop num"""
        num_width_tiles, num_height_tiles = (
            best_width // self.image_size,
            best_height // self.image_size,
        )
        images_spatial_crop.append([num_width_tiles, num_height_tiles])

        """add image tokens"""
        h = w = math.ceil(
            (self.image_size // self.patch_size) / self.downsample_ratio
        )
        # global views tokens h * (w + 1), 1 is for line separator
        tokenized_image = [self.image_token_id] * h * (w + 1)
        # add a separator between global and local views
        tokenized_image += [self.image_token_id]
        # local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
        tokenized_image += (
            [self.image_token_id]
            * (num_height_tiles * h)
            * (num_width_tiles * w + 1)
        )

        tokenized_str += tokenized_image
        images_seq_mask += [True] * len(tokenized_image)
        num_image_tokens.append(len(tokenized_image))

    """process the last text split"""
    tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
    tokenized_str += tokenized_sep
    images_seq_mask += [False] * len(tokenized_sep)

    """add the bos and eos tokens"""
    if bos:
        tokenized_str = [self.bos_id] + tokenized_str
        images_seq_mask = [False] + images_seq_mask
    if eos:
        tokenized_str = tokenized_str + [self.eos_id]
        images_seq_mask = images_seq_mask + [False]

    assert len(tokenized_str) == len(images_seq_mask), (
        f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
    )

    return (
        tokenized_str,
        images_list,
        images_seq_mask,
        images_spatial_crop,
        num_image_tokens,
    )

FunASRProcessor

Bases: ProcessorMixin

Constructs a FunASR processor which wraps a FunASR feature extractor and a FunASR tokenizer into a single processor.

[FunASRProcessor] offers all the functionalities of [FunASRFeatureExtractor] and [Qwen2Tokenizer]. See the [~FunASRProcessor.__call__] and [~FunASRProcessor.decode] for more information.

Parameters:

Name Type Description Default
feature_extractor `FunASRFeatureExtractor`

An instance of [FunASRFeatureExtractor]. The feature extractor is a required input.

required
tokenizer `Qwen2Tokenizer`

An instance of [Qwen2Tokenizer]. The tokenizer is a required input.

required
Source code in vllm/transformers_utils/processors/funasr_processor.py
class FunASRProcessor(ProcessorMixin):
    r"""
    Constructs a FunASR processor which wraps a FunASR feature extractor and
    a FunASR tokenizer into a single processor.

    [`FunASRProcessor`] offers all the functionalities of
    [`FunASRFeatureExtractor`] and [`Qwen2Tokenizer`]. See the
    [`~FunASRProcessor.__call__`] and [`~FunASRProcessor.decode`] for more
    information.

    Args:
        feature_extractor (`FunASRFeatureExtractor`): An instance of
            [`FunASRFeatureExtractor`].
            The feature extractor is a required input.
        tokenizer (`Qwen2Tokenizer`):
            An instance of [`Qwen2Tokenizer`]. The tokenizer is a required
            input.
    """

    feature_extractor_class = "FunASRFeatureExtractor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(
        self,
        feature_extractor,
        tokenizer,
        audio_token="<|AUDIO|>",
    ):
        super().__init__(feature_extractor, tokenizer)
        self.current_processor = self.feature_extractor
        self._in_target_context_manager = False
        self.audio_token = (
            tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
        )
        self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)

    def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
        return self.tokenizer.get_decoder_prompt_ids(
            task=task, language=language, no_timestamps=no_timestamps
        )

    def __call__(self, *args, **kwargs):
        """
        Forwards the `audio` argument to FunASRFeatureExtractor's
        [`~FunASRFeatureExtractor.__call__`] and the `text` argument to
        [`~Qwen2Tokenizer.__call__`]. Please refer to the docstring of the
        above two methods for more information.
        """
        if self._in_target_context_manager:
            return self.current_processor(*args, **kwargs)

        audio = kwargs.pop("audio", None)
        sampling_rate = kwargs.pop("sampling_rate", None)
        text = kwargs.pop("text", None)
        if len(args) > 0:
            audio = args[0]
            args = args[1:]

        if text is None:
            raise ValueError("You need to specify `text` input to process.")
        elif isinstance(text, str):
            text = [text]
        elif not isinstance(text, list) and not isinstance(text[0], str):
            raise ValueError(
                "Invalid input text. Please provide a string, or a list of strings"
            )

        if audio is not None:
            # ensure we have as much audios as audio tokens
            num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
            num_audios = 1 if type(audio) is np.ndarray else len(audio)
            if num_audio_tokens != num_audios:
                raise ValueError(
                    f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"  # noqa: E501
                )
            inputs = self.feature_extractor(
                audio, *args, sampling_rate=sampling_rate, **kwargs
            )

            expanded_text = []
            for sample in text:
                replace_str = []
                while self.audio_token in sample:
                    num_audio_tokens = inputs["fake_token_len"].item()

                    expanded_audio_token = self.audio_token * num_audio_tokens

                    replace_str.append(expanded_audio_token)
                    sample = sample.replace(self.audio_token, "<placeholder>", 1)

                while "<placeholder>" in sample:
                    sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
                expanded_text.append(sample)
            text = expanded_text

        if text is not None:
            encodings = self.tokenizer(text, **kwargs)

        if text is None:
            return inputs

        elif audio is None:
            return encodings
        else:
            inputs["labels"] = encodings["input_ids"]

            return inputs

    def get_prompt_ids(self, text: str, return_tensors="np"):
        return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)

__call__

__call__(*args, **kwargs)

Forwards the audio argument to FunASRFeatureExtractor's [~FunASRFeatureExtractor.__call__] and the text argument to [~Qwen2Tokenizer.__call__]. Please refer to the docstring of the above two methods for more information.

Source code in vllm/transformers_utils/processors/funasr_processor.py
def __call__(self, *args, **kwargs):
    """
    Forwards the `audio` argument to FunASRFeatureExtractor's
    [`~FunASRFeatureExtractor.__call__`] and the `text` argument to
    [`~Qwen2Tokenizer.__call__`]. Please refer to the docstring of the
    above two methods for more information.
    """
    if self._in_target_context_manager:
        return self.current_processor(*args, **kwargs)

    audio = kwargs.pop("audio", None)
    sampling_rate = kwargs.pop("sampling_rate", None)
    text = kwargs.pop("text", None)
    if len(args) > 0:
        audio = args[0]
        args = args[1:]

    if text is None:
        raise ValueError("You need to specify `text` input to process.")
    elif isinstance(text, str):
        text = [text]
    elif not isinstance(text, list) and not isinstance(text[0], str):
        raise ValueError(
            "Invalid input text. Please provide a string, or a list of strings"
        )

    if audio is not None:
        # ensure we have as much audios as audio tokens
        num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
        num_audios = 1 if type(audio) is np.ndarray else len(audio)
        if num_audio_tokens != num_audios:
            raise ValueError(
                f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"  # noqa: E501
            )
        inputs = self.feature_extractor(
            audio, *args, sampling_rate=sampling_rate, **kwargs
        )

        expanded_text = []
        for sample in text:
            replace_str = []
            while self.audio_token in sample:
                num_audio_tokens = inputs["fake_token_len"].item()

                expanded_audio_token = self.audio_token * num_audio_tokens

                replace_str.append(expanded_audio_token)
                sample = sample.replace(self.audio_token, "<placeholder>", 1)

            while "<placeholder>" in sample:
                sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
            expanded_text.append(sample)
        text = expanded_text

    if text is not None:
        encodings = self.tokenizer(text, **kwargs)

    if text is None:
        return inputs

    elif audio is None:
        return encodings
    else:
        inputs["labels"] = encodings["input_ids"]

        return inputs

HunYuanVLImageProcessor

Bases: BaseImageProcessor

Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
class HunYuanVLImageProcessor(BaseImageProcessor):
    model_input_names = [
        "pixel_values",
        "image_grid_thw",
        "pixel_values_videos",
        "video_grid_thw",
    ]

    def __init__(
        self,
        do_resize: bool = True,
        size: dict[str, int] | None = None,
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        do_rescale: bool = True,
        rescale_factor: int | float = 1 / 255,
        do_normalize: bool = True,
        image_mean: float | list[float] | None = None,
        image_std: float | list[float] | None = None,
        do_convert_rgb: bool = True,
        min_pixels: int | None = None,
        max_pixels: int | None = None,
        patch_size: int = 16,
        temporal_patch_size: int = 2,
        merge_size: int = 2,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        if size is not None and (
            "shortest_edge" not in size or "longest_edge" not in size
        ):
            raise ValueError(
                "size must contain 'shortest_edge' and 'longest_edge' keys."
            )
        else:
            size = {"shortest_edge": 512 * 512, "longest_edge": 2048 * 2048}
        # backward compatibility: override size with min_pixels and max_pixels
        # if they are provided.
        if min_pixels is not None:
            size["shortest_edge"] = min_pixels
        if max_pixels is not None:
            size["longest_edge"] = max_pixels
        self.min_pixels = size["shortest_edge"]
        self.max_pixels = size["longest_edge"]
        self.size = size

        self.do_resize = do_resize
        self.resample = resample
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
        self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD

        self.patch_size = patch_size
        self.temporal_patch_size = temporal_patch_size
        self.merge_size = merge_size
        self.do_convert_rgb = do_convert_rgb

        # hard-code

    def _preprocess(
        self,
        images: ImageInput | VideoInput,
        do_resize: bool | None = None,
        size: dict[str, int] | None = None,
        resample: PILImageResampling = None,
        do_rescale: bool | None = None,
        rescale_factor: float | None = None,
        do_normalize: bool | None = None,
        image_mean: float | list[float] | None = None,
        image_std: float | list[float] | None = None,
        patch_size: int = 16,
        temporal_patch_size: int = 2,
        merge_size: int = 2,
        do_convert_rgb: bool | None = None,
        data_format: ChannelDimension | None = ChannelDimension.FIRST,
        input_data_format: str | ChannelDimension | None = None,
    ):
        """
        Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.

        Args:
            images (`ImageInput`):
                Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Scale factor to use if rescaling the image.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            patch_size (`int`, *optional*, defaults to `self.patch_size`):
                The spatial patch size of the vision encoder.
            temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
                The temporal patch size of the vision encoder.
            merge_size (`int`, *optional*, defaults to `self.merge_size`):
                The merge size of the vision encoder to llm encoder.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.   - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """  # noqa: E501
        images = make_list_of_images(images)

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        width, height = images[0].width, images[0].height
        resized_width, resized_height = width, height
        processed_images = []
        for image in images:
            if do_resize:
                resized_height, resized_width = smart_resize(
                    height=height,
                    width=width,
                    factor=patch_size * merge_size,
                    min_pixels=self.min_pixels,
                    max_pixels=self.max_pixels,
                )
                image = image.resize((resized_width, resized_height))

            if do_normalize:
                image = transforms.Compose(
                    [
                        transforms.ToTensor(),
                        transforms.Normalize(self.image_mean, self.image_std),
                    ]
                )(image)
            processed_images.append(image)

        patches = np.array(processed_images)
        channel = patches.shape[1]
        grid_t = patches.shape[0] // temporal_patch_size
        grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
        patches = patches.reshape(
            1,
            channel,
            grid_h // merge_size,
            merge_size,
            patch_size,
            grid_w // merge_size,
            merge_size,
            patch_size,
        )
        patches = patches.transpose(0, 2, 3, 5, 6, 1, 4, 7)
        flatten_patches = patches.reshape(
            1 * grid_h * grid_w, channel * patch_size * patch_size
        )

        return flatten_patches, (grid_t, grid_h, grid_w)

    def preprocess(
        self,
        images: ImageInput,
        videos: VideoInput = None,
        do_resize: bool | None = None,
        size: dict[str, int] | None = None,
        min_pixels: int | None = None,
        max_pixels: int | None = None,
        resample: PILImageResampling = None,
        do_rescale: bool | None = None,
        rescale_factor: float | None = None,
        do_normalize: bool | None = None,
        image_mean: float | list[float] | None = None,
        image_std: float | list[float] | None = None,
        patch_size: int | None = None,
        temporal_patch_size: int | None = None,
        merge_size: int | None = None,
        do_convert_rgb: bool | None = None,
        return_tensors: str | TensorType | None = None,
        data_format: ChannelDimension | None = ChannelDimension.FIRST,
        input_data_format: str | ChannelDimension | None = None,
    ):
        """
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            videos (`VideoInput`):
                Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
                passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
                the longest edge resized to keep the input aspect ratio.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            min_pixels (`int`, *optional*, defaults to `self.min_pixels`):
                The min pixels of the image to resize the image.
            max_pixels (`int`, *optional*, defaults to `self.max_pixels`):
                The max pixels of the image to resize the image.
            patch_size (`int`, *optional*, defaults to `self.patch_size`):
                The spatial patch size of the vision encoder.
            temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
                The temporal patch size of the vision encoder.
            merge_size (`int`, *optional*, defaults to `self.merge_size`):
                The merge size of the vision encoder to llm encoder.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        """  # noqa: E501
        min_pixels = min_pixels if min_pixels is not None else self.min_pixels
        max_pixels = max_pixels if max_pixels is not None else self.max_pixels

        if size is not None:
            if "shortest_edge" not in size or "longest_edge" not in size:
                raise ValueError(
                    "size must contain 'shortest_edge' and 'longest_edge' keys."
                )
            min_pixels = size["shortest_edge"]
        elif min_pixels is not None and max_pixels is not None:
            # backward compatibility: override size with min_pixels and max_pixels
            # if they are provided.
            size = {"shortest_edge": min_pixels, "longest_edge": max_pixels}
        else:
            size = {**self.size}

        do_resize = do_resize if do_resize is not None else self.do_resize

        resample = resample if resample is not None else self.resample
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = (
            rescale_factor if rescale_factor is not None else self.rescale_factor
        )
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        patch_size = patch_size if patch_size is not None else self.patch_size
        temporal_patch_size = (
            temporal_patch_size
            if temporal_patch_size is not None
            else self.temporal_patch_size
        )
        merge_size = merge_size if merge_size is not None else self.merge_size
        do_convert_rgb = (
            do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
        )

        if images is not None:
            images = make_flat_list_of_images(images)

        if images is not None and not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        validate_preprocess_arguments(
            rescale_factor=rescale_factor,
            do_normalize=do_normalize,
            image_mean=image_mean,
            image_std=image_std,
            do_resize=do_resize,
            size=size,
            resample=resample,
        )

        data = {}
        if images is not None:
            pixel_values, vision_grid_thws = [], []
            for image in images:
                patches, image_grid_thw = self._preprocess(
                    image,
                    do_resize=do_resize,
                    size=size,
                    resample=resample,
                    do_rescale=do_rescale,
                    rescale_factor=rescale_factor,
                    do_normalize=do_normalize,
                    image_mean=image_mean,
                    image_std=image_std,
                    patch_size=patch_size,
                    temporal_patch_size=temporal_patch_size,
                    merge_size=merge_size,
                    data_format=data_format,
                    do_convert_rgb=do_convert_rgb,
                    input_data_format=input_data_format,
                )
                pixel_values.extend(patches)
                vision_grid_thws.append(image_grid_thw)
            pixel_values = np.array(pixel_values)
            vision_grid_thws = np.array(vision_grid_thws)
            data.update(
                {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
            )

        # kept for BC only and should be removed after v5.0
        if videos is not None:
            logger.warning(
                "`HunYuanVLV1ImageProcessor` works only with image inputs "
                "and doesn't process videos anymore. "
                "This is a deprecated behavior and will be removed in v5.0. "
                "Your videos should be forwarded to `HunYuanVLV1VideoProcessor`. "
            )
            videos = make_batched_videos(videos)
            pixel_values_videos, vision_grid_thws_videos = [], []
            for images in videos:
                patches, video_grid_thw = self._preprocess(
                    images,
                    do_resize=do_resize,
                    size=size,
                    resample=resample,
                    do_rescale=do_rescale,
                    rescale_factor=rescale_factor,
                    do_normalize=do_normalize,
                    image_mean=image_mean,
                    image_std=image_std,
                    patch_size=patch_size,
                    temporal_patch_size=temporal_patch_size,
                    merge_size=merge_size,
                    data_format=data_format,
                    do_convert_rgb=do_convert_rgb,
                    input_data_format=input_data_format,
                )
                pixel_values_videos.extend(patches)
                vision_grid_thws_videos.append(video_grid_thw)
            data.update(
                {
                    "pixel_values_videos": np.array(pixel_values_videos),
                    "video_grid_thw": np.array(vision_grid_thws_videos),
                }
            )

        return BatchFeature(data=data, tensor_type=return_tensors)

    def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
        """
        A utility that returns number of image patches for a given image size.

        Args:
            height (`int`):
                Height of the input image.
            width (`int`):
                Width of the input image.
            images_kwargs (`dict`, *optional*):
                Any kwargs to override defaults of the image processor.
        Returns:
            `int`: Number of image patches per image.
        """
        min_pixels = (
            images_kwargs["min_pixels"]
            if "min_pixels" in images_kwargs
            else self.size["shortest_edge"]
        )
        max_pixels = (
            images_kwargs["max_pixels"]
            if "max_pixels" in images_kwargs
            else self.size["longest_edge"]
        )
        patch_size = images_kwargs.get("patch_size", self.patch_size)
        merge_size = images_kwargs.get("merge_size", self.merge_size)

        factor = patch_size * merge_size
        resized_height, resized_width = smart_resize(
            height, width, factor, min_pixels=min_pixels, max_pixels=max_pixels
        )
        grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
        return grid_h * (grid_w + 1) + 2

_preprocess

_preprocess(
    images: ImageInput | VideoInput,
    do_resize: bool | None = None,
    size: dict[str, int] | None = None,
    resample: PILImageResampling = None,
    do_rescale: bool | None = None,
    rescale_factor: float | None = None,
    do_normalize: bool | None = None,
    image_mean: float | list[float] | None = None,
    image_std: float | list[float] | None = None,
    patch_size: int = 16,
    temporal_patch_size: int = 2,
    merge_size: int = 2,
    do_convert_rgb: bool | None = None,
    data_format: ChannelDimension | None = FIRST,
    input_data_format: str | ChannelDimension | None = None,
)

Preprocess an image or batch of images. Copy of the preprocess method from CLIPImageProcessor.

Parameters:

Name Type Description Default
images `ImageInput`

Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set do_rescale=False.

required
do_resize `bool`, *optional*, defaults to `self.do_resize`

Whether to resize the image.

None
size `dict[str, int]`, *optional*, defaults to `self.size`

Size of the image after resizing. shortest_edge and longest_edge keys must be present.

None
resample `PILImageResampling`, *optional*, defaults to `self.resample`

Resampling filter to use if resizing the image. This can be one of the PILImageResampling enums.

None
do_rescale `bool`, *optional*, defaults to `self.do_rescale`

Whether to rescale the image.

None
rescale_factor `float`, *optional*, defaults to `self.rescale_factor`

Scale factor to use if rescaling the image.

None
do_normalize `bool`, *optional*, defaults to `self.do_normalize`

Whether to normalize the image.

None
image_mean `float` or `list[float]`, *optional*, defaults to `self.image_mean`

Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.

None
image_std `float` or `list[float]`, *optional*, defaults to `self.image_std`

Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.

None
patch_size `int`, *optional*, defaults to `self.patch_size`

The spatial patch size of the vision encoder.

16
temporal_patch_size `int`, *optional*, defaults to `self.temporal_patch_size`

The temporal patch size of the vision encoder.

2
merge_size `int`, *optional*, defaults to `self.merge_size`

The merge size of the vision encoder to llm encoder.

2
do_convert_rgb `bool`, *optional*, defaults to `self.do_convert_rgb`

Whether to convert the image to RGB.

None
data_format `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`

The channel dimension format for the output image. Can be one of: - "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format. - "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image.

FIRST
input_data_format `ChannelDimension` or `str`, *optional*

The channel dimension format for the input image. Can be one of: - "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format. - "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format. - "none" or ChannelDimension.NONE: image in (height, width) format. - "none" or ChannelDimension.NONE: image in (height, width) format.

None
Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
def _preprocess(
    self,
    images: ImageInput | VideoInput,
    do_resize: bool | None = None,
    size: dict[str, int] | None = None,
    resample: PILImageResampling = None,
    do_rescale: bool | None = None,
    rescale_factor: float | None = None,
    do_normalize: bool | None = None,
    image_mean: float | list[float] | None = None,
    image_std: float | list[float] | None = None,
    patch_size: int = 16,
    temporal_patch_size: int = 2,
    merge_size: int = 2,
    do_convert_rgb: bool | None = None,
    data_format: ChannelDimension | None = ChannelDimension.FIRST,
    input_data_format: str | ChannelDimension | None = None,
):
    """
    Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.

    Args:
        images (`ImageInput`):
            Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
        do_resize (`bool`, *optional*, defaults to `self.do_resize`):
            Whether to resize the image.
        size (`dict[str, int]`, *optional*, defaults to `self.size`):
            Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
        resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
            Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
        do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
            Whether to rescale the image.
        rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
            Scale factor to use if rescaling the image.
        do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
            Whether to normalize the image.
        image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
            Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
        image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
            Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
        patch_size (`int`, *optional*, defaults to `self.patch_size`):
            The spatial patch size of the vision encoder.
        temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
            The temporal patch size of the vision encoder.
        merge_size (`int`, *optional*, defaults to `self.merge_size`):
            The merge size of the vision encoder to llm encoder.
        do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
            Whether to convert the image to RGB.
        data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
            The channel dimension format for the output image. Can be one of:
            - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
            - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            - Unset: Use the channel dimension format of the input image.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format for the input image. Can be one of:
            - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
            - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.   - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
    """  # noqa: E501
    images = make_list_of_images(images)

    if do_convert_rgb:
        images = [convert_to_rgb(image) for image in images]

    width, height = images[0].width, images[0].height
    resized_width, resized_height = width, height
    processed_images = []
    for image in images:
        if do_resize:
            resized_height, resized_width = smart_resize(
                height=height,
                width=width,
                factor=patch_size * merge_size,
                min_pixels=self.min_pixels,
                max_pixels=self.max_pixels,
            )
            image = image.resize((resized_width, resized_height))

        if do_normalize:
            image = transforms.Compose(
                [
                    transforms.ToTensor(),
                    transforms.Normalize(self.image_mean, self.image_std),
                ]
            )(image)
        processed_images.append(image)

    patches = np.array(processed_images)
    channel = patches.shape[1]
    grid_t = patches.shape[0] // temporal_patch_size
    grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
    patches = patches.reshape(
        1,
        channel,
        grid_h // merge_size,
        merge_size,
        patch_size,
        grid_w // merge_size,
        merge_size,
        patch_size,
    )
    patches = patches.transpose(0, 2, 3, 5, 6, 1, 4, 7)
    flatten_patches = patches.reshape(
        1 * grid_h * grid_w, channel * patch_size * patch_size
    )

    return flatten_patches, (grid_t, grid_h, grid_w)

get_number_of_image_patches

get_number_of_image_patches(
    height: int, width: int, images_kwargs=None
)

A utility that returns number of image patches for a given image size.

Parameters:

Name Type Description Default
height `int`

Height of the input image.

required
width `int`

Width of the input image.

required
images_kwargs `dict`, *optional*

Any kwargs to override defaults of the image processor.

None

Returns: int: Number of image patches per image.

Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
    """
    A utility that returns number of image patches for a given image size.

    Args:
        height (`int`):
            Height of the input image.
        width (`int`):
            Width of the input image.
        images_kwargs (`dict`, *optional*):
            Any kwargs to override defaults of the image processor.
    Returns:
        `int`: Number of image patches per image.
    """
    min_pixels = (
        images_kwargs["min_pixels"]
        if "min_pixels" in images_kwargs
        else self.size["shortest_edge"]
    )
    max_pixels = (
        images_kwargs["max_pixels"]
        if "max_pixels" in images_kwargs
        else self.size["longest_edge"]
    )
    patch_size = images_kwargs.get("patch_size", self.patch_size)
    merge_size = images_kwargs.get("merge_size", self.merge_size)

    factor = patch_size * merge_size
    resized_height, resized_width = smart_resize(
        height, width, factor, min_pixels=min_pixels, max_pixels=max_pixels
    )
    grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
    return grid_h * (grid_w + 1) + 2

preprocess

preprocess(
    images: ImageInput,
    videos: VideoInput = None,
    do_resize: bool | None = None,
    size: dict[str, int] | None = None,
    min_pixels: int | None = None,
    max_pixels: int | None = None,
    resample: PILImageResampling = None,
    do_rescale: bool | None = None,
    rescale_factor: float | None = None,
    do_normalize: bool | None = None,
    image_mean: float | list[float] | None = None,
    image_std: float | list[float] | None = None,
    patch_size: int | None = None,
    temporal_patch_size: int | None = None,
    merge_size: int | None = None,
    do_convert_rgb: bool | None = None,
    return_tensors: str | TensorType | None = None,
    data_format: ChannelDimension | None = FIRST,
    input_data_format: str | ChannelDimension | None = None,
)

Parameters:

Name Type Description Default
images `ImageInput`

Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.

required
videos `VideoInput`

Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If passing in videos with pixel values between 0 and 1, set do_rescale=False.

None
do_resize `bool`, *optional*, defaults to `self.do_resize`

Whether to resize the image.

None
size `dict[str, int]`, *optional*, defaults to `self.size`

Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio.

None
resample `int`, *optional*, defaults to `self.resample`

Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling. Only has an effect if do_resize is set to True.

None
do_rescale `bool`, *optional*, defaults to `self.do_rescale`

Whether to rescale the image.

None
rescale_factor `float`, *optional*, defaults to `self.rescale_factor`

Rescale factor to rescale the image by if do_rescale is set to True.

None
do_normalize `bool`, *optional*, defaults to `self.do_normalize`

Whether to normalize the image.

None
image_mean `float` or `list[float]`, *optional*, defaults to `self.image_mean`

Image mean to use for normalization. Only has an effect if do_normalize is set to True.

None
image_std `float` or `list[float]`, *optional*, defaults to `self.image_std`

Image standard deviation to use for normalization. Only has an effect if do_normalize is set to True.

None
min_pixels `int`, *optional*, defaults to `self.min_pixels`

The min pixels of the image to resize the image.

None
max_pixels `int`, *optional*, defaults to `self.max_pixels`

The max pixels of the image to resize the image.

None
patch_size `int`, *optional*, defaults to `self.patch_size`

The spatial patch size of the vision encoder.

None
temporal_patch_size `int`, *optional*, defaults to `self.temporal_patch_size`

The temporal patch size of the vision encoder.

None
merge_size `int`, *optional*, defaults to `self.merge_size`

The merge size of the vision encoder to llm encoder.

None
do_convert_rgb `bool`, *optional*, defaults to `self.do_convert_rgb`

Whether to convert the image to RGB.

None
return_tensors `str` or `TensorType`, *optional*

The type of tensors to return. Can be one of: - Unset: Return a list of np.ndarray. - TensorType.TENSORFLOW or 'tf': Return a batch of type tf.Tensor. - TensorType.PYTORCH or 'pt': Return a batch of type torch.Tensor. - TensorType.NUMPY or 'np': Return a batch of type np.ndarray. - TensorType.JAX or 'jax': Return a batch of type jax.numpy.ndarray.

None
data_format `ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`

The channel dimension format for the output image. Can be one of: - "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format. - "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image.

FIRST
input_data_format `ChannelDimension` or `str`, *optional*

The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format. - "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format. - "none" or ChannelDimension.NONE: image in (height, width) format.

None
Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
def preprocess(
    self,
    images: ImageInput,
    videos: VideoInput = None,
    do_resize: bool | None = None,
    size: dict[str, int] | None = None,
    min_pixels: int | None = None,
    max_pixels: int | None = None,
    resample: PILImageResampling = None,
    do_rescale: bool | None = None,
    rescale_factor: float | None = None,
    do_normalize: bool | None = None,
    image_mean: float | list[float] | None = None,
    image_std: float | list[float] | None = None,
    patch_size: int | None = None,
    temporal_patch_size: int | None = None,
    merge_size: int | None = None,
    do_convert_rgb: bool | None = None,
    return_tensors: str | TensorType | None = None,
    data_format: ChannelDimension | None = ChannelDimension.FIRST,
    input_data_format: str | ChannelDimension | None = None,
):
    """
    Args:
        images (`ImageInput`):
            Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
            passing in images with pixel values between 0 and 1, set `do_rescale=False`.
        videos (`VideoInput`):
            Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
            passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
        do_resize (`bool`, *optional*, defaults to `self.do_resize`):
            Whether to resize the image.
        size (`dict[str, int]`, *optional*, defaults to `self.size`):
            Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
            the longest edge resized to keep the input aspect ratio.
        resample (`int`, *optional*, defaults to `self.resample`):
            Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
            has an effect if `do_resize` is set to `True`.
        do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
            Whether to rescale the image.
        rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
            Rescale factor to rescale the image by if `do_rescale` is set to `True`.
        do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
            Whether to normalize the image.
        image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
            Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
        image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
            Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
            `True`.
        min_pixels (`int`, *optional*, defaults to `self.min_pixels`):
            The min pixels of the image to resize the image.
        max_pixels (`int`, *optional*, defaults to `self.max_pixels`):
            The max pixels of the image to resize the image.
        patch_size (`int`, *optional*, defaults to `self.patch_size`):
            The spatial patch size of the vision encoder.
        temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
            The temporal patch size of the vision encoder.
        merge_size (`int`, *optional*, defaults to `self.merge_size`):
            The merge size of the vision encoder to llm encoder.
        do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
            Whether to convert the image to RGB.
        return_tensors (`str` or `TensorType`, *optional*):
            The type of tensors to return. Can be one of:
            - Unset: Return a list of `np.ndarray`.
            - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
            - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
            - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
            - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
        data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
            The channel dimension format for the output image. Can be one of:
            - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
            - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            - Unset: Use the channel dimension format of the input image.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format for the input image. If unset, the channel dimension format is inferred
            from the input image. Can be one of:
            - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
            - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

    """  # noqa: E501
    min_pixels = min_pixels if min_pixels is not None else self.min_pixels
    max_pixels = max_pixels if max_pixels is not None else self.max_pixels

    if size is not None:
        if "shortest_edge" not in size or "longest_edge" not in size:
            raise ValueError(
                "size must contain 'shortest_edge' and 'longest_edge' keys."
            )
        min_pixels = size["shortest_edge"]
    elif min_pixels is not None and max_pixels is not None:
        # backward compatibility: override size with min_pixels and max_pixels
        # if they are provided.
        size = {"shortest_edge": min_pixels, "longest_edge": max_pixels}
    else:
        size = {**self.size}

    do_resize = do_resize if do_resize is not None else self.do_resize

    resample = resample if resample is not None else self.resample
    do_rescale = do_rescale if do_rescale is not None else self.do_rescale
    rescale_factor = (
        rescale_factor if rescale_factor is not None else self.rescale_factor
    )
    do_normalize = do_normalize if do_normalize is not None else self.do_normalize
    image_mean = image_mean if image_mean is not None else self.image_mean
    image_std = image_std if image_std is not None else self.image_std
    patch_size = patch_size if patch_size is not None else self.patch_size
    temporal_patch_size = (
        temporal_patch_size
        if temporal_patch_size is not None
        else self.temporal_patch_size
    )
    merge_size = merge_size if merge_size is not None else self.merge_size
    do_convert_rgb = (
        do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
    )

    if images is not None:
        images = make_flat_list_of_images(images)

    if images is not None and not valid_images(images):
        raise ValueError(
            "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
            "torch.Tensor, tf.Tensor or jax.ndarray."
        )

    validate_preprocess_arguments(
        rescale_factor=rescale_factor,
        do_normalize=do_normalize,
        image_mean=image_mean,
        image_std=image_std,
        do_resize=do_resize,
        size=size,
        resample=resample,
    )

    data = {}
    if images is not None:
        pixel_values, vision_grid_thws = [], []
        for image in images:
            patches, image_grid_thw = self._preprocess(
                image,
                do_resize=do_resize,
                size=size,
                resample=resample,
                do_rescale=do_rescale,
                rescale_factor=rescale_factor,
                do_normalize=do_normalize,
                image_mean=image_mean,
                image_std=image_std,
                patch_size=patch_size,
                temporal_patch_size=temporal_patch_size,
                merge_size=merge_size,
                data_format=data_format,
                do_convert_rgb=do_convert_rgb,
                input_data_format=input_data_format,
            )
            pixel_values.extend(patches)
            vision_grid_thws.append(image_grid_thw)
        pixel_values = np.array(pixel_values)
        vision_grid_thws = np.array(vision_grid_thws)
        data.update(
            {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
        )

    # kept for BC only and should be removed after v5.0
    if videos is not None:
        logger.warning(
            "`HunYuanVLV1ImageProcessor` works only with image inputs "
            "and doesn't process videos anymore. "
            "This is a deprecated behavior and will be removed in v5.0. "
            "Your videos should be forwarded to `HunYuanVLV1VideoProcessor`. "
        )
        videos = make_batched_videos(videos)
        pixel_values_videos, vision_grid_thws_videos = [], []
        for images in videos:
            patches, video_grid_thw = self._preprocess(
                images,
                do_resize=do_resize,
                size=size,
                resample=resample,
                do_rescale=do_rescale,
                rescale_factor=rescale_factor,
                do_normalize=do_normalize,
                image_mean=image_mean,
                image_std=image_std,
                patch_size=patch_size,
                temporal_patch_size=temporal_patch_size,
                merge_size=merge_size,
                data_format=data_format,
                do_convert_rgb=do_convert_rgb,
                input_data_format=input_data_format,
            )
            pixel_values_videos.extend(patches)
            vision_grid_thws_videos.append(video_grid_thw)
        data.update(
            {
                "pixel_values_videos": np.array(pixel_values_videos),
                "video_grid_thw": np.array(vision_grid_thws_videos),
            }
        )

    return BatchFeature(data=data, tensor_type=return_tensors)

Ovis2_5Processor

Bases: ProcessorMixin

Constructs an Ovis processor which wraps an Ovis image processor and a Qwen2 tokenizer into a single processor. [OvisProcessor] offers all the functionalities of [Qwen2VLImageProcessor] and [Qwen2TokenizerFast]. See the [~OvisProcessor.__call__] and [~OvisProcessor.decode] for more information. Args: image_processor ([Qwen2VLImageProcessor], optional): The image processor is a required input. tokenizer ([Qwen2TokenizerFast], optional): The tokenizer is a required input. chat_template (str, optional): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.

Source code in vllm/transformers_utils/processors/ovis2_5.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
class Ovis2_5Processor(ProcessorMixin):
    r"""
    Constructs an Ovis processor which wraps an Ovis image processor
    and a Qwen2 tokenizer into a single processor.
    [`OvisProcessor`] offers all the functionalities of
    [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`].
    See the [`~OvisProcessor.__call__`] and [`~OvisProcessor.decode`]
    for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will
            be used to convert lists of messages in a chat into
            a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template", "image_pad_token"]

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template=None,
        image_pad_token=None,
        patch_size=16,
        hidden_stride=2,
        temporal_patch_size=1,
        **kwargs,
    ):
        self.image_token = IMAGE_TOKEN
        self.video_token = VIDEO_TOKEN
        self.image_pad_token = "<|image_pad|>"

        self.patch_size = patch_size
        self.hidden_stride = hidden_stride
        self.temporal_patch_size = temporal_patch_size
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    @cached_property
    def extra_special_tokens(self):
        image_pad_token_id = self.tokenizer.get_vocab()[self.image_pad_token]
        extra_special_tokens = {
            "image_token": -200,
            "video_token": -201,
            "visual_atom": -300,
            "image_start": -301,
            "image_end": -302,
            "video_start": -303,
            "video_end": -304,
            "image_pad": image_pad_token_id,
        }
        return extra_special_tokens

    def __call__(
        self,
        images: ImageInput = None,
        videos: np.ndarray | list[ImageInput] = None,
        text: TextInput
        | PreTokenizedInput
        | list[TextInput]
        | list[PreTokenizedInput] = None,
        **kwargs: Unpack[Ovis2_5ProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s)
        and image(s). This method forwards the `text`and `kwargs` arguments
        to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text`
        is not `None` to encode the text. To prepare the vision inputs,
        this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`]
        if `vision_infos` is not `None`.
            Args:
                images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`,
                    `list[PIL.Image.Image]`, `list[np.ndarray]`,
                    `list[torch.Tensor]`):
                    The image or batch of images to be prepared.
                    Each image can be a PIL image, NumPy array or PyTorch
                    tensor. Both channels-first and channels-last formats
                    are supported.
                text (`str`, `list[str]`, `list[list[str]]`):
                    The sequence or batch of sequences to be encoded.
                    Each sequence can be a string or a list of strings
                    (pretokenized string). If the sequences are provided as
                    list of strings (pretokenized), you must set
                    `is_split_into_words=True` (to lift the ambiguity with
                    a batch of sequences).
                videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`,
                    `list[torch.Tensor]`):
                    The image or batch of videos to be prepared. Each video
                    can be a 4D NumPy array or PyTorch tensor, or a nested
                    list of 3D frames. Both channels-first and channels-last
                    formats are supported.
                return_tensors (`str` or [`~utils.TensorType`], *optional*):
                    If set, will return tensors of a particular framework.
                    Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
            Returns:
                [`BatchFeature`]: A [`BatchFeature`] with the following fields:
                - **input_ids** -- list of token ids to be fed to a model.
                  Returned when `text` is not `None`.
                - **attention_mask** -- list of indices specifying which tokens
                  should be attended to by the model (when
                  `return_attention_mask=True` or if *"attention_mask"*
                  is in `self.model_input_names` and if `text` is not `None`).
                - **pixel_values** -- Pixel values to be fed to a model.
                  Returned when `images` is not `None`.
                - **pixel_values_videos** -- Pixel values of videos to be fed to
                  a model. Returned when `videos` is not `None`.
                - **image_grid_thw** -- list of image 3D grid in LLM. Returned
                  when `images` is not `None`.
                - **video_grid_thw** -- list of video 3D grid in LLM. Returned
                  when `videos` is not `None`.
                - **second_per_grid_ts** -- list of video seconds per time grid.
                  Returned when `videos` is not `None`.
        """
        min_pixels = kwargs.pop("min_pixels", MIN_PIXELS)
        max_pixels = kwargs.pop("max_pixels", MAX_PIXELS)

        output_kwargs = self._merge_kwargs(
            Ovis2_5ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        # Process all images first
        visual_features = {}
        output = BatchFeature()
        if images is not None:
            processed_images = []
            image_placeholders_list = []
            grids = []
            # Process each image
            for image in images if isinstance(images, list) else [images]:
                pixel_values, image_placeholders, grid = self.preprocess_multidata(
                    images=image,
                    min_pixels=min_pixels,
                    max_pixels=max_pixels,
                    **output_kwargs["images_kwargs"],
                )
                processed_images.append(pixel_values)
                image_placeholders_list.append(image_placeholders)
                grids.append(grid)

            # assign all processed images
            if processed_images:
                visual_features["image_placeholders"] = image_placeholders_list
            output["pixel_values"] = processed_images
            output["grids"] = grids

        if videos is not None:
            processed_videos = []
            videos_placeholders_list = []
            grids = []
            # Process each video
            for video in videos if isinstance(videos, list) else [videos]:
                pixel_values, video_placeholders, grid = self.preprocess_multidata(
                    video=video,
                    min_pixels=min_pixels,
                    max_pixels=max_pixels,
                    **output_kwargs["videos_kwargs"],
                )
                processed_videos.append(pixel_values)
                videos_placeholders_list.append(video_placeholders)
                grids.append(grid)
            # assign all processed videos
            if processed_videos:
                visual_features["video_placeholders"] = videos_placeholders_list
            output["video_pixel_values"] = processed_videos
            output["video_grids"] = grids

        # Process text input
        if text is not None:
            if not isinstance(text, list):
                text = [text]
            tokenized_batched_text = self._tokenize_with_visual_symbol(text)
            image_token_id = self.get_token_value("image_token")
            video_token_id = self.get_token_value("video_token")
            replaced_ids_list = []
            image_idx = 0
            video_idx = 0
            for ids_tensor in tokenized_batched_text:
                has_image_tokens = (
                    image_token_id in ids_tensor
                    and "image_placeholders" in visual_features
                    and image_idx < len(visual_features["image_placeholders"])
                )
                has_video_tokens = (
                    video_token_id in ids_tensor
                    and "video_placeholders" in visual_features
                    and video_idx < len(visual_features["video_placeholders"])
                )
                if has_image_tokens or has_video_tokens:
                    # Convert to list for easier manipulation
                    ids_list = ids_tensor.tolist()
                    new_ids = []

                    # Replace placeholders
                    for token_id in ids_list:
                        if token_id == image_token_id:
                            new_ids.extend(
                                visual_features["image_placeholders"][image_idx]
                            )
                            image_idx += 1
                        elif token_id == video_token_id:
                            new_ids.extend(
                                visual_features["video_placeholders"][video_idx]
                            )
                            video_idx += 1
                        else:
                            new_ids.append(token_id)
                    # Convert back to tensor
                    ids_tensor = torch.tensor(new_ids, dtype=torch.long)
                replaced_ids_list.append(ids_tensor)
            if replaced_ids_list:
                replaced_and_tokenized_ids = torch.stack(replaced_ids_list)
            else:
                replaced_and_tokenized_ids = torch.tensor([], dtype=torch.long)
            output["input_ids"] = replaced_and_tokenized_ids

            return output
        # If only images were provided
        return BatchFeature(data=visual_features)

    def _tokenize_with_visual_symbol(self, text_list: list[str]) -> torch.LongTensor:
        batch_token_ids = []
        for text in text_list:
            token_ids = []
            video_token_id = self.get_token_value("video_token")
            image_token_id = self.get_token_value("image_token")
            video_split_texts = text.split(self.video_token)

            for j, video_segment in enumerate(video_split_texts):
                image_split_texts = video_segment.split(self.image_token)
                text_chunks = [
                    self.tokenizer(chunk, add_special_tokens=False).input_ids
                    for chunk in image_split_texts
                ]
                segment_tokens = []
                for i, chunk in enumerate(text_chunks):
                    segment_tokens.extend(chunk)
                    if i < len(text_chunks) - 1:
                        segment_tokens.append(image_token_id)
                token_ids.extend(segment_tokens)
                if j < len(video_split_texts) - 1:
                    token_ids.append(video_token_id)

            batch_token_ids.append(token_ids)
        return torch.tensor(batch_token_ids, dtype=torch.long)

    # Copied from qwen2_vl
    def smart_resize(
        self,
        height: int,
        width: int,
        factor: int = 28,
        min_pixels: int = MIN_PIXELS,
        max_pixels: int = MAX_PIXELS,
    ):
        """Rescales the image so that the following conditions are met:
        1. Both dimensions (height and width) are divisible by 'factor'.
        2. The total number of pixels is within the range
            ['min_pixels', 'max_pixels'].
        3. The aspect ratio of the image is maintained as closely as possible.
        """
        if height < factor or width < factor:
            print(
                f"height:{height} or width:{width} must be larger than factor:{factor}"
            )
            if height < width:
                width = round(factor / height * width)
                height = factor
            else:
                height = round(factor / width * height)
                width = factor

        elif max(height, width) / min(height, width) > 200:
            print(
                f"absolute aspect ratio must be smaller than 200, "
                f"got {max(height, width) / min(height, width)}"
            )
            if height > width:
                height = 200 * width
            else:
                width = 200 * height

        h_bar = round(height / factor) * factor
        w_bar = round(width / factor) * factor
        if h_bar * w_bar > max_pixels:
            beta = math.sqrt((height * width) / max_pixels)
            h_bar = math.floor(height / beta / factor) * factor
            w_bar = math.floor(width / beta / factor) * factor
        elif h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = math.ceil(height * beta / factor) * factor
            w_bar = math.ceil(width * beta / factor) * factor
        return h_bar, w_bar

    def get_token_value(self, tok):
        return self.extra_special_tokens[tok]

    def construct_visual_indicators(self, grid, is_video: bool = False):
        if is_video:
            start_token = self.get_token_value("video_start")
            end_token = self.get_token_value("video_end")
        else:
            start_token = self.get_token_value("image_start")
            end_token = self.get_token_value("image_end")

        image_placeholders = [start_token, self.get_token_value("visual_atom")]
        if grid[0] * grid[1] > 1:
            for r in range(grid[0]):
                for c in range(grid[1]):
                    image_placeholders.append(self.get_token_value("visual_atom"))

        image_placeholders.append(end_token)
        return image_placeholders

    def construct_visual_placeholders(self, grid, is_video: bool = False):
        visual_placeholders = self.construct_visual_indicators((1, 1), is_video)

        image_atom_token_id = self.get_token_value("visual_atom")
        # Extract the padding token ID from tokenizer
        image_padding_token_id = self.get_token_value("image_pad")

        num_image_atoms = grid[0] * grid[1] * grid[2]
        num_image_atoms //= self.hidden_stride**2
        num_image_atoms //= self.temporal_patch_size

        # Create a new list with padding tokens inserted
        padded_placeholder_tokens = []
        for token in visual_placeholders:
            if token == image_atom_token_id:
                padded_placeholder_tokens.extend(
                    [image_padding_token_id] * num_image_atoms
                )
            else:
                padded_placeholder_tokens.append(image_padding_token_id)
        return padded_placeholder_tokens

    def preprocess_multidata(
        self,
        images: PIL.Image.Image | list[PIL.Image.Image] | None = None,
        video: list[PIL.Image.Image] | np.ndarray | None = None,
        do_convert_rgb: bool | None = True,
        min_pixels: int = MIN_PIXELS,
        max_pixels: int = MAX_PIXELS,
        return_tensors: str | None = "pt",
    ):
        is_video = False
        if images is not None:
            if not isinstance(images, list):
                images = [images]
        elif video is not None:
            is_video = True
            # type of vidoe in dummy_mm_data is np.ndarray
            if isinstance(video, np.ndarray):
                images = []
                for i in range(video.shape[0]):
                    image = PIL.Image.fromarray(video[i].astype(np.uint8))
                    images.append(image)
            elif isinstance(video, list):
                images = video
        else:
            raise ValueError("Either images or video should be provided.")
        min_pixels = min(
            max_pixels if max_pixels is not None else MAX_PIXELS,
            min_pixels if min_pixels is not None else MIN_PIXELS,
        )
        images = [
            image.convert("RGB") if do_convert_rgb and image.mode != "RGB" else image
            for image in images
        ]

        width, height = images[0].size
        resized_height, resized_width = height, width
        processed_images = []
        for image in images:
            resized_height, resized_width = self.smart_resize(
                height,
                width,
                factor=self.patch_size * self.hidden_stride,
                min_pixels=min_pixels,
                max_pixels=max_pixels,
            )
            new_size = dict(height=resized_height, width=resized_width)
            image_pt = self.image_processor.preprocess(image, size=new_size)[
                "pixel_values"
            ][0]

            processed_images.append(image_pt)

        patches = np.array(processed_images)
        if patches.shape[0] % self.temporal_patch_size != 0:
            num_to_pad = self.temporal_patch_size - (
                patches.shape[0] % self.temporal_patch_size
            )
            repeats = np.repeat(patches[-1][np.newaxis], num_to_pad, axis=0)
            patches = np.concatenate([patches, repeats], axis=0)
        channel = patches.shape[1]
        grid_t = patches.shape[0] // self.temporal_patch_size
        grid_h = resized_height // self.patch_size
        grid_w = resized_width // self.patch_size

        patches = patches.reshape(
            grid_t,
            self.temporal_patch_size,
            channel,
            grid_h // self.hidden_stride,
            self.hidden_stride,
            self.patch_size,
            grid_w // self.hidden_stride,
            self.hidden_stride,
            self.patch_size,
        )
        patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
        flatten_patches = patches.reshape(
            grid_t * grid_h * grid_w,
            channel * self.temporal_patch_size * self.patch_size * self.patch_size,
        )

        visual_placeholders = self.construct_visual_placeholders(
            [grid_t, grid_h, grid_w], is_video
        )
        return (
            torch.tensor(flatten_patches),
            visual_placeholders,
            torch.tensor([[grid_t, grid_h, grid_w]]),
        )

__call__

__call__(
    images: ImageInput = None,
    videos: ndarray | list[ImageInput] = None,
    text: TextInput
    | PreTokenizedInput
    | list[TextInput]
    | list[PreTokenizedInput] = None,
    **kwargs: Unpack[Ovis2_5ProcessorKwargs],
) -> BatchFeature

Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the textand kwargs arguments to Qwen2TokenizerFast's [~Qwen2TokenizerFast.__call__] if text is not None to encode the text. To prepare the vision inputs, this method forwards the vision_infos and kwrags arguments to Qwen2VLImageProcessor's [~Qwen2VLImageProcessor.__call__] if vision_infos is not None. Args: images (PIL.Image.Image, np.ndarray, torch.Tensor, list[PIL.Image.Image], list[np.ndarray], list[torch.Tensor]): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (str, list[str], list[list[str]]): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set is_split_into_words=True (to lift the ambiguity with a batch of sequences). videos (np.ndarray, torch.Tensor, list[np.ndarray], list[torch.Tensor]): The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. return_tensors (str or [~utils.TensorType], optional): If set, will return tensors of a particular framework. Acceptable values are: - 'tf': Return TensorFlow tf.constant objects. - 'pt': Return PyTorch torch.Tensor objects. - 'np': Return NumPy np.ndarray objects. - 'jax': Return JAX jnp.ndarray objects. Returns: [BatchFeature]: A [BatchFeature] with the following fields: - input_ids -- list of token ids to be fed to a model. Returned when text is not None. - attention_mask -- list of indices specifying which tokens should be attended to by the model (when return_attention_mask=True or if "attention_mask" is in self.model_input_names and if text is not None). - pixel_values -- Pixel values to be fed to a model. Returned when images is not None. - pixel_values_videos -- Pixel values of videos to be fed to a model. Returned when videos is not None. - image_grid_thw -- list of image 3D grid in LLM. Returned when images is not None. - video_grid_thw -- list of video 3D grid in LLM. Returned when videos is not None. - second_per_grid_ts -- list of video seconds per time grid. Returned when videos is not None.

Source code in vllm/transformers_utils/processors/ovis2_5.py
def __call__(
    self,
    images: ImageInput = None,
    videos: np.ndarray | list[ImageInput] = None,
    text: TextInput
    | PreTokenizedInput
    | list[TextInput]
    | list[PreTokenizedInput] = None,
    **kwargs: Unpack[Ovis2_5ProcessorKwargs],
) -> BatchFeature:
    """
    Main method to prepare for the model one or several sequences(s)
    and image(s). This method forwards the `text`and `kwargs` arguments
    to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text`
    is not `None` to encode the text. To prepare the vision inputs,
    this method forwards the `vision_infos` and `kwrags` arguments to
    Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`]
    if `vision_infos` is not `None`.
        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`,
                `list[PIL.Image.Image]`, `list[np.ndarray]`,
                `list[torch.Tensor]`):
                The image or batch of images to be prepared.
                Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats
                are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded.
                Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as
                list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with
                a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`,
                `list[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video
                can be a 4D NumPy array or PyTorch tensor, or a nested
                list of 3D frames. Both channels-first and channels-last
                formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework.
                Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:
            - **input_ids** -- list of token ids to be fed to a model.
              Returned when `text` is not `None`.
            - **attention_mask** -- list of indices specifying which tokens
              should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"*
              is in `self.model_input_names` and if `text` is not `None`).
            - **pixel_values** -- Pixel values to be fed to a model.
              Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to
              a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- list of image 3D grid in LLM. Returned
              when `images` is not `None`.
            - **video_grid_thw** -- list of video 3D grid in LLM. Returned
              when `videos` is not `None`.
            - **second_per_grid_ts** -- list of video seconds per time grid.
              Returned when `videos` is not `None`.
    """
    min_pixels = kwargs.pop("min_pixels", MIN_PIXELS)
    max_pixels = kwargs.pop("max_pixels", MAX_PIXELS)

    output_kwargs = self._merge_kwargs(
        Ovis2_5ProcessorKwargs,
        tokenizer_init_kwargs=self.tokenizer.init_kwargs,
        **kwargs,
    )
    # Process all images first
    visual_features = {}
    output = BatchFeature()
    if images is not None:
        processed_images = []
        image_placeholders_list = []
        grids = []
        # Process each image
        for image in images if isinstance(images, list) else [images]:
            pixel_values, image_placeholders, grid = self.preprocess_multidata(
                images=image,
                min_pixels=min_pixels,
                max_pixels=max_pixels,
                **output_kwargs["images_kwargs"],
            )
            processed_images.append(pixel_values)
            image_placeholders_list.append(image_placeholders)
            grids.append(grid)

        # assign all processed images
        if processed_images:
            visual_features["image_placeholders"] = image_placeholders_list
        output["pixel_values"] = processed_images
        output["grids"] = grids

    if videos is not None:
        processed_videos = []
        videos_placeholders_list = []
        grids = []
        # Process each video
        for video in videos if isinstance(videos, list) else [videos]:
            pixel_values, video_placeholders, grid = self.preprocess_multidata(
                video=video,
                min_pixels=min_pixels,
                max_pixels=max_pixels,
                **output_kwargs["videos_kwargs"],
            )
            processed_videos.append(pixel_values)
            videos_placeholders_list.append(video_placeholders)
            grids.append(grid)
        # assign all processed videos
        if processed_videos:
            visual_features["video_placeholders"] = videos_placeholders_list
        output["video_pixel_values"] = processed_videos
        output["video_grids"] = grids

    # Process text input
    if text is not None:
        if not isinstance(text, list):
            text = [text]
        tokenized_batched_text = self._tokenize_with_visual_symbol(text)
        image_token_id = self.get_token_value("image_token")
        video_token_id = self.get_token_value("video_token")
        replaced_ids_list = []
        image_idx = 0
        video_idx = 0
        for ids_tensor in tokenized_batched_text:
            has_image_tokens = (
                image_token_id in ids_tensor
                and "image_placeholders" in visual_features
                and image_idx < len(visual_features["image_placeholders"])
            )
            has_video_tokens = (
                video_token_id in ids_tensor
                and "video_placeholders" in visual_features
                and video_idx < len(visual_features["video_placeholders"])
            )
            if has_image_tokens or has_video_tokens:
                # Convert to list for easier manipulation
                ids_list = ids_tensor.tolist()
                new_ids = []

                # Replace placeholders
                for token_id in ids_list:
                    if token_id == image_token_id:
                        new_ids.extend(
                            visual_features["image_placeholders"][image_idx]
                        )
                        image_idx += 1
                    elif token_id == video_token_id:
                        new_ids.extend(
                            visual_features["video_placeholders"][video_idx]
                        )
                        video_idx += 1
                    else:
                        new_ids.append(token_id)
                # Convert back to tensor
                ids_tensor = torch.tensor(new_ids, dtype=torch.long)
            replaced_ids_list.append(ids_tensor)
        if replaced_ids_list:
            replaced_and_tokenized_ids = torch.stack(replaced_ids_list)
        else:
            replaced_and_tokenized_ids = torch.tensor([], dtype=torch.long)
        output["input_ids"] = replaced_and_tokenized_ids

        return output
    # If only images were provided
    return BatchFeature(data=visual_features)

smart_resize

smart_resize(
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = MIN_PIXELS,
    max_pixels: int = MAX_PIXELS,
)

Rescales the image so that the following conditions are met: 1. Both dimensions (height and width) are divisible by 'factor'. 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. 3. The aspect ratio of the image is maintained as closely as possible.

Source code in vllm/transformers_utils/processors/ovis2_5.py
def smart_resize(
    self,
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = MIN_PIXELS,
    max_pixels: int = MAX_PIXELS,
):
    """Rescales the image so that the following conditions are met:
    1. Both dimensions (height and width) are divisible by 'factor'.
    2. The total number of pixels is within the range
        ['min_pixels', 'max_pixels'].
    3. The aspect ratio of the image is maintained as closely as possible.
    """
    if height < factor or width < factor:
        print(
            f"height:{height} or width:{width} must be larger than factor:{factor}"
        )
        if height < width:
            width = round(factor / height * width)
            height = factor
        else:
            height = round(factor / width * height)
            width = factor

    elif max(height, width) / min(height, width) > 200:
        print(
            f"absolute aspect ratio must be smaller than 200, "
            f"got {max(height, width) / min(height, width)}"
        )
        if height > width:
            height = 200 * width
        else:
            width = 200 * height

    h_bar = round(height / factor) * factor
    w_bar = round(width / factor) * factor
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = math.floor(height / beta / factor) * factor
        w_bar = math.floor(width / beta / factor) * factor
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = math.ceil(height * beta / factor) * factor
        w_bar = math.ceil(width * beta / factor) * factor
    return h_bar, w_bar

OvisProcessor

Bases: ProcessorMixin

Constructs an Ovis processor which wraps an Ovis image processor and a Qwen2 tokenizer into a single processor. [OvisProcessor] offers all the functionalities of [Qwen2VLImageProcessor] and [Qwen2TokenizerFast]. See the [~OvisProcessor.__call__] and [~OvisProcessor.decode] for more information. Args: image_processor ([Qwen2VLImageProcessor], optional): The image processor is a required input. tokenizer ([Qwen2TokenizerFast], optional): The tokenizer is a required input. chat_template (str, optional): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.

Source code in vllm/transformers_utils/processors/ovis.py
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
class OvisProcessor(ProcessorMixin):
    r"""
    Constructs an Ovis processor which wraps an Ovis image processor and a Qwen2 tokenizer into a single processor.
    [`OvisProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~OvisProcessor.__call__`] and [`~OvisProcessor.decode`] for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template", "image_pad_token", "image_segment_len"]

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template=None,
        image_pad_token=None,
        image_segment_len=255,
        **kwargs,
    ):
        self.image_token = "<image>"
        self.image_pad_token = image_pad_token
        self.image_segment_len = image_segment_len
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    @cached_property
    def extra_special_tokens(self):
        image_pad_token_id = self.tokenizer.get_vocab()[self.image_pad_token]
        extra_special_tokens = {
            "image_token": -200,
            "image_atom": -300,
            "image_start": -301,
            "image_prefix": -302,
            "image_col_sep": -303,
            "image_row_sep": -304,
            "image_end": -305,
            "image_pad": image_pad_token_id,
        }
        return extra_special_tokens

    def __call__(
        self,
        images: ImageInput = None,
        text: TextInput
        | PreTokenizedInput
        | list[TextInput]
        | list[PreTokenizedInput] = None,
        **kwargs: Unpack[OvisProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
            Args:
                images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                    The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                    tensor. Both channels-first and channels-last formats are supported.
                text (`str`, `list[str]`, `list[list[str]]`):
                    The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                    (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                    `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
                videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
                    The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                    tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
                return_tensors (`str` or [`~utils.TensorType`], *optional*):
                    If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
            Returns:
                [`BatchFeature`]: A [`BatchFeature`] with the following fields:
                - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
                - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
                  `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
                  `None`).
                - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
                - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
                - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
                - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
                - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
        """

        max_partition = kwargs.pop("max_partition", 9)
        covering_threshold = kwargs.pop("covering_threshold", 0.9)

        output_kwargs = self._merge_kwargs(
            OvisProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        # Process all images first
        image_features = {}
        if images is not None:
            processed_images = []
            image_placeholders_list = []
            grids = []

            # Process each image
            for image in images if isinstance(images, list) else [images]:
                pixel_values, image_placeholders, grid = self.preprocess_image(
                    image=image,
                    max_partition=max_partition,
                    covering_threshold=covering_threshold,
                    **output_kwargs["images_kwargs"],
                )
                processed_images.append(pixel_values)
                image_placeholders_list.append(image_placeholders)
                grids.append(grid)

            # assign all processed images
            if processed_images:
                image_features["image_placeholders"] = image_placeholders_list

        # Process text input
        if text is not None:
            if not isinstance(text, list):
                text = [text]

            tokenized_batched_text = self._tokenize_with_image_symbol(text)
            image_token_id = self.get_token_value("image_token")
            replaced_ids_list = []
            idx = 0
            for ids_tensor in tokenized_batched_text:
                if (
                    image_token_id in ids_tensor
                    and "image_placeholders" in image_features
                ):
                    if idx < len(image_features["image_placeholders"]):
                        # Converts in list for ease of use
                        ids_list = ids_tensor.tolist()

                        new_ids = []

                        # replace placeholders
                        for i, token_id in enumerate(ids_list):
                            if token_id == image_token_id:
                                placeholder_ids = image_features["image_placeholders"][
                                    idx
                                ]
                                new_ids.extend(placeholder_ids)
                                idx += 1
                            else:
                                new_ids.append(token_id)

                        # Converts back to tensors
                        ids_tensor = torch.tensor(new_ids, dtype=torch.long)
                    else:
                        raise RuntimeError(
                            "Mismatch between the images you provided and the number of placeholder present in the text"
                        )

                replaced_ids_list.append(ids_tensor)

            if replaced_ids_list:
                replaced_and_tokenized_ids = torch.stack(replaced_ids_list)
            else:
                replaced_and_tokenized_ids = torch.tensor([], dtype=torch.long)

            # Create the output with text features
            output = BatchFeature(
                data={
                    "input_ids": replaced_and_tokenized_ids,
                }
            )

            # Add image features if present
            if image_features:
                output["pixel_values"] = processed_images
                output["grids"] = grids

            return output

        # If only images were provided
        return BatchFeature(data=image_features)

    def _tokenize_with_image_symbol(self, text_list: list[str]) -> torch.LongTensor:
        batch_token_ids = []
        for text in text_list:
            text_chunks = [
                self.tokenizer(chunk, add_special_tokens=False).input_ids
                for chunk in text.split(self.image_token)
            ]
            token_ids = []
            num_chuck = len(text_chunks)
            for i, chunk in enumerate(text_chunks):
                token_ids.extend(chunk)
                if i < num_chuck - 1:
                    token_ids.append(self.get_token_value("image_token"))
            batch_token_ids.append(token_ids)
        return torch.tensor(batch_token_ids, dtype=torch.long)

    def get_image_size(self):
        size = self.image_processor.size
        if "shortest_edge" in size:
            width = height = size["shortest_edge"]
        elif "height" in size and "width" in size:
            width = size["width"]
            height = size["height"]
        else:
            raise ValueError("Can't parse image size from image_processor config.")
        return height, width

    def get_token_value(self, tok):
        return self.extra_special_tokens[tok]

    def construct_image_indicators(self, grid):
        image_placeholders = [
            self.get_token_value("image_start"),
            self.get_token_value("image_atom"),
            self.get_token_value("image_prefix"),
        ]
        if grid[0] * grid[1] > 1:
            for r in range(grid[0]):
                for c in range(grid[1]):
                    image_placeholders.append(self.get_token_value("image_atom"))
                    if c < grid[1] - 1:
                        image_placeholders.append(self.get_token_value("image_col_sep"))
                if r < grid[0] - 1:
                    image_placeholders.append(self.get_token_value("image_row_sep"))
        image_placeholders.append(self.get_token_value("image_end"))
        return image_placeholders

    def construct_image_placeholders(self, grid):
        image_placeholders = self.construct_image_indicators(grid)

        image_atom_token_id = self.get_token_value("image_atom")
        # Extract the padding token ID from tokenizer
        image_padding_token_id = self.get_token_value("image_pad")

        # Create a new list with padding tokens inserted
        padded_placeholder_tokens = []
        for token in image_placeholders:
            padded_placeholder_tokens.append(image_padding_token_id)
            if token == image_atom_token_id:
                padded_placeholder_tokens.extend(
                    [image_padding_token_id] * self.image_segment_len
                )
        return padded_placeholder_tokens

    def preprocess_image(
        self,
        image: PIL.Image.Image,
        max_partition,
        covering_threshold,
        do_convert_rgb,
        return_tensors,
    ):
        def _preprocess(img: PIL.Image.Image, side):
            # first resize and preprocess
            w, h = img.size
            if w == h:
                new_width = new_height = side
            elif w > h:
                new_width = side
                new_height = int(h / w * new_width)
            else:
                new_height = side
                new_width = int(w / h * new_height)
            new_size = dict(height=new_height, width=new_width)
            pixel_values = self.image_processor.preprocess(
                img, size=new_size, return_tensors=return_tensors
            )["pixel_values"]

            # then pad to square
            square_values = torch.zeros(
                [1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device
            )
            new_height, new_width = pixel_values.shape[2:]
            if new_height == new_width:
                square_values[:, :, :, :] = pixel_values
            elif new_height > new_width:
                from_index = (side - new_width) // 2
                square_values[:, :, :, from_index : from_index + new_width] = (
                    pixel_values
                )
            else:
                from_index = (side - new_height) // 2
                square_values[:, :, from_index : from_index + new_height, :] = (
                    pixel_values
                )

            return square_values

        def _partition(img, grid) -> list[tuple[int, int, int, int]]:
            w, h = img.size
            row_height = h // grid[0]
            col_width = w // grid[1]

            partition = []
            for row in range(grid[0]):
                for col in range(grid[1]):
                    left = col * col_width
                    upper = row * row_height
                    right = w if col == grid[1] - 1 else (col + 1) * col_width
                    lower = h if row == grid[0] - 1 else (row + 1) * row_height
                    partition.append((left, upper, right, lower))

            return partition

        def _covering_area(left, upper, right, lower, side):
            w = right - left
            h = lower - upper
            w, h = max(w, h), min(w, h)
            if w > side:
                h = h / w * side
                w = side
            return w * h

        def _get_best_grid(img, side):
            img_area = img.size[0] * img.size[1]

            candidate_grids = []
            for i in range(1, max_partition + 1):
                for j in range(1, max_partition + 1):
                    if i * j <= max_partition:
                        candidate_grids.append((i, j))

            all_grids = []
            good_grids = []
            for grid in candidate_grids:
                partition = _partition(img, grid)
                covering_ratio = (
                    sum([_covering_area(*p, side) for p in partition]) / img_area
                )
                assert covering_ratio <= 1.0
                all_grids.append((grid, covering_ratio))
                if covering_ratio > covering_threshold:
                    good_grids.append((grid, covering_ratio))

            if len(good_grids) > 0:
                # pick the good partition with minimum #sub_images and break the tie using covering_ratio
                return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][
                    0
                ]
            else:
                # pick the partition with maximum covering_ratio and break the tie using #sub_images
                return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]

        if do_convert_rgb:
            image = convert_image_mode(image, "RGB")

        sides = self.get_image_size()
        if sides[0] != sides[1]:
            raise ValueError("get_image_size() returns non-square size")
        side = sides[0]
        grid = _get_best_grid(image, side)
        partition = _partition(image, grid)
        crops = [image.crop(p) for p in partition]
        if len(crops) > 1:
            crops.insert(0, image)
        pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
        image_placeholders = self.construct_image_placeholders(grid)
        return torch.tensor(pixel_values), image_placeholders, torch.tensor(grid)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(self, generated_outputs):
        """
        Post-process the output of the model to decode the text.
        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.
        Returns:
            `list[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False,
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(
            dict.fromkeys(tokenizer_input_names + image_processor_input_names)
        )
        return names_from_processor + ["second_per_grid_ts"]

__call__

__call__(
    images: ImageInput = None,
    text: TextInput
    | PreTokenizedInput
    | list[TextInput]
    | list[PreTokenizedInput] = None,
    **kwargs: Unpack[OvisProcessorKwargs],
) -> BatchFeature

Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the text and kwargs arguments to Qwen2TokenizerFast's [~Qwen2TokenizerFast.__call__] if text is not None to encode the text. To prepare the vision inputs, this method forwards the vision_infos and kwrags arguments to Qwen2VLImageProcessor's [~Qwen2VLImageProcessor.__call__] if vision_infos is not None. Args: images (PIL.Image.Image, np.ndarray, torch.Tensor, list[PIL.Image.Image], list[np.ndarray], list[torch.Tensor]): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (str, list[str], list[list[str]]): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set is_split_into_words=True (to lift the ambiguity with a batch of sequences). videos (np.ndarray, torch.Tensor, list[np.ndarray], list[torch.Tensor]): The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. return_tensors (str or [~utils.TensorType], optional): If set, will return tensors of a particular framework. Acceptable values are: - 'tf': Return TensorFlow tf.constant objects. - 'pt': Return PyTorch torch.Tensor objects. - 'np': Return NumPy np.ndarray objects. - 'jax': Return JAX jnp.ndarray objects. Returns: [BatchFeature]: A [BatchFeature] with the following fields: - input_ids -- List of token ids to be fed to a model. Returned when text is not None. - attention_mask -- List of indices specifying which tokens should be attended to by the model (when return_attention_mask=True or if "attention_mask" is in self.model_input_names and if text is not None). - pixel_values -- Pixel values to be fed to a model. Returned when images is not None. - pixel_values_videos -- Pixel values of videos to be fed to a model. Returned when videos is not None. - image_grid_thw -- List of image 3D grid in LLM. Returned when images is not None. - video_grid_thw -- List of video 3D grid in LLM. Returned when videos is not None. - second_per_grid_ts -- List of video seconds per time grid. Returned when videos is not None.

Source code in vllm/transformers_utils/processors/ovis.py
def __call__(
    self,
    images: ImageInput = None,
    text: TextInput
    | PreTokenizedInput
    | list[TextInput]
    | list[PreTokenizedInput] = None,
    **kwargs: Unpack[OvisProcessorKwargs],
) -> BatchFeature:
    """
    Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
    and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
    the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
    Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:
            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
            - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
    """

    max_partition = kwargs.pop("max_partition", 9)
    covering_threshold = kwargs.pop("covering_threshold", 0.9)

    output_kwargs = self._merge_kwargs(
        OvisProcessorKwargs,
        tokenizer_init_kwargs=self.tokenizer.init_kwargs,
        **kwargs,
    )

    # Process all images first
    image_features = {}
    if images is not None:
        processed_images = []
        image_placeholders_list = []
        grids = []

        # Process each image
        for image in images if isinstance(images, list) else [images]:
            pixel_values, image_placeholders, grid = self.preprocess_image(
                image=image,
                max_partition=max_partition,
                covering_threshold=covering_threshold,
                **output_kwargs["images_kwargs"],
            )
            processed_images.append(pixel_values)
            image_placeholders_list.append(image_placeholders)
            grids.append(grid)

        # assign all processed images
        if processed_images:
            image_features["image_placeholders"] = image_placeholders_list

    # Process text input
    if text is not None:
        if not isinstance(text, list):
            text = [text]

        tokenized_batched_text = self._tokenize_with_image_symbol(text)
        image_token_id = self.get_token_value("image_token")
        replaced_ids_list = []
        idx = 0
        for ids_tensor in tokenized_batched_text:
            if (
                image_token_id in ids_tensor
                and "image_placeholders" in image_features
            ):
                if idx < len(image_features["image_placeholders"]):
                    # Converts in list for ease of use
                    ids_list = ids_tensor.tolist()

                    new_ids = []

                    # replace placeholders
                    for i, token_id in enumerate(ids_list):
                        if token_id == image_token_id:
                            placeholder_ids = image_features["image_placeholders"][
                                idx
                            ]
                            new_ids.extend(placeholder_ids)
                            idx += 1
                        else:
                            new_ids.append(token_id)

                    # Converts back to tensors
                    ids_tensor = torch.tensor(new_ids, dtype=torch.long)
                else:
                    raise RuntimeError(
                        "Mismatch between the images you provided and the number of placeholder present in the text"
                    )

            replaced_ids_list.append(ids_tensor)

        if replaced_ids_list:
            replaced_and_tokenized_ids = torch.stack(replaced_ids_list)
        else:
            replaced_and_tokenized_ids = torch.tensor([], dtype=torch.long)

        # Create the output with text features
        output = BatchFeature(
            data={
                "input_ids": replaced_and_tokenized_ids,
            }
        )

        # Add image features if present
        if image_features:
            output["pixel_values"] = processed_images
            output["grids"] = grids

        return output

    # If only images were provided
    return BatchFeature(data=image_features)

batch_decode

batch_decode(*args, **kwargs)

This method forwards all its arguments to Qwen2TokenizerFast's [~PreTrainedTokenizer.batch_decode]. Please refer to the docstring of this method for more information.

Source code in vllm/transformers_utils/processors/ovis.py
def batch_decode(self, *args, **kwargs):
    """
    This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
    refer to the docstring of this method for more information.
    """
    return self.tokenizer.batch_decode(*args, **kwargs)

decode

decode(*args, **kwargs)

This method forwards all its arguments to Qwen2TokenizerFast's [~PreTrainedTokenizer.decode]. Please refer to the docstring of this method for more information.

Source code in vllm/transformers_utils/processors/ovis.py
def decode(self, *args, **kwargs):
    """
    This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
    the docstring of this method for more information.
    """
    return self.tokenizer.decode(*args, **kwargs)

post_process_image_text_to_text

post_process_image_text_to_text(generated_outputs)

Post-process the output of the model to decode the text. Args: generated_outputs (torch.Tensor or np.ndarray): The output of the model generate function. The output is expected to be a tensor of shape (batch_size, sequence_length) or (sequence_length,). Returns: list[str]: The decoded text.

Source code in vllm/transformers_utils/processors/ovis.py
def post_process_image_text_to_text(self, generated_outputs):
    """
    Post-process the output of the model to decode the text.
    Args:
        generated_outputs (`torch.Tensor` or `np.ndarray`):
            The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
            or `(sequence_length,)`.
    Returns:
        `list[str]`: The decoded text.
    """
    return self.tokenizer.batch_decode(
        generated_outputs,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )