Skip to content

vllm.profiler.layerwise_profile

LayerwiseProfileResults dataclass

Bases: profile

Source code in vllm/profiler/layerwise_profile.py
@dataclass
class LayerwiseProfileResults(profile):
    _kineto_results: _ProfilerResult
    _kineto_event_correlation_map: dict[int, list[_KinetoEvent]] = field(init=False)
    _event_correlation_map: dict[int, list[FunctionEvent]] = field(init=False)
    _module_tree: list[_ModuleTreeNode] = field(init=False)
    _model_stats_tree: list[_StatsTreeNode] = field(init=False)
    _summary_stats_tree: list[_StatsTreeNode] = field(init=False)

    # profile metadata
    num_running_seqs: int | None = None

    def __post_init__(self):
        self._build_correlation_map()
        self._build_module_tree()
        self._build_stats_trees()

    def print_model_table(self, column_widths: dict[str, int] = None):
        _column_widths = dict(
            name=60, cpu_time_us=12, cuda_time_us=12, pct_cuda_time=12, trace=60
        )
        if column_widths:
            _column_widths.update(**column_widths)
        filtered_model_table = [
            (depth, row)
            for depth, row in self._flatten_stats_tree(self._model_stats_tree)
            if row.cuda_time_us > 0 or row.cpu_time_us > 0
        ]
        TablePrinter(ModelStatsEntry, _column_widths).print_table(
            self._indent_row_names_based_on_depth(
                filtered_model_table,
                indent_style=lambda indent: "|" + "-" * indent + " ",
            )
        )

    def print_summary_table(self, column_widths: dict[str, int] = None):
        _column_widths = dict(
            name=80, cuda_time_us=12, pct_cuda_time=12, invocations=15
        )
        if column_widths:
            _column_widths.update(**column_widths)
        filtered_summary_table = [
            (depth, row)
            for depth, row in self._flatten_stats_tree(self._summary_stats_tree)
            if row.cuda_time_us > 0
        ]
        TablePrinter(SummaryStatsEntry, _column_widths).print_table(
            self._indent_row_names_based_on_depth(
                filtered_summary_table,
                indent_style=lambda indent: "|" + "-" * indent + " ",
            )
        )

    def export_model_stats_table_csv(self, filename: str):
        df = pd.DataFrame(
            [asdict(row) for _, row in self._flatten_stats_tree(self._model_stats_tree)]
        )
        df.to_csv(filename)

    def export_summary_stats_table_csv(self, filename: str):
        df = pd.DataFrame(
            [
                asdict(row)
                for _, row in self._flatten_stats_tree(self._summary_stats_tree)
            ]
        )
        df.to_csv(filename)

    def convert_stats_to_dict(self) -> dict[str, Any]:
        return {
            "metadata": {"num_running_seqs": self.num_running_seqs},
            "summary_stats": self._convert_stats_tree_to_dict(self._summary_stats_tree),
            "model_stats": self._convert_stats_tree_to_dict(self._model_stats_tree),
        }

    @staticmethod
    def _indent_row_names_based_on_depth(
        depths_rows: list[tuple[int, StatsEntry]],
        indent_style: Callable[[int], str] | str = " ",
    ):
        indented_rows = []
        for depth, row in depths_rows:
            if row.cuda_time_us == 0:
                continue
            indented_row = copy.deepcopy(row)
            indented_row.name = indent_string(indented_row.name, depth, indent_style)
            indented_rows.append(indented_row)
        return indented_rows

    def _build_correlation_map(self):
        self._kineto_event_correlation_map = defaultdict(list)
        for event in self._kineto_results.events():
            self._kineto_event_correlation_map[event.correlation_id()].append(event)

    def _build_module_tree(self):
        self._module_tree = []
        event_tree = self._kineto_results.experimental_event_tree()

        def _df_traversal(
            event: _ProfilerEvent, curr_node: _ModuleTreeNode | None = None
        ):
            # For the tensor parallel case for now only look at task 1
            if event.start_tid != 1:
                return

            if event_has_module(event):
                node = _ModuleTreeNode(event=event, parent=curr_node)
                if curr_node:
                    curr_node.children.append(node)
                else:
                    self._module_tree.append(node)
                curr_node = node

            is_leaf = event.children is None or len(event.children) == 0
            if is_leaf and curr_node:
                node = _ModuleTreeNode(
                    event=event,
                    parent=curr_node,
                    trace=event_torch_op_stack_trace(
                        event, until=lambda x: event_has_module(x)
                    ),
                )
                curr_node.children.append(node)
                curr_node = node

            for child in event.children:
                _df_traversal(child, curr_node)

        for root in event_tree:
            _df_traversal(root)

    def _get_kineto_gpu_event(self, node: _ModuleTreeNode):
        if node.event.tag != _EventType.Kineto:
            return None
        correlated_kineto_events = self._kineto_event_correlation_map.get(
            node.event.correlation_id, []
        )
        iterator = (
            x
            for x in correlated_kineto_events
            if x.device_type() == DeviceType.CUDA and x.name() == node.event.name
        )
        return next(iterator, None)

    def _cumulative_cuda_time(self, node: _ModuleTreeNode):
        "Return cuda time in microseconds"

        def _cumulative_cuda_time_recursive(node: _ModuleTreeNode):
            if node.is_leaf and (gpu_kineto_event := self._get_kineto_gpu_event(node)):
                return gpu_kineto_event.duration_ns() / 1000.0
            else:
                cumulative_cuda_time = 0
                for child in node.children:
                    cumulative_cuda_time += _cumulative_cuda_time_recursive(child)
                return cumulative_cuda_time

        return _cumulative_cuda_time_recursive(node)

    def _total_cuda_time(self):
        return sum([self._cumulative_cuda_time(root) for root in self._module_tree])

    def _build_stats_trees(self):
        summary_dict: dict[str, _StatsTreeNode] = {}
        total_cuda_time = self._total_cuda_time()

        def pct_cuda_time(cuda_time_us):
            return (cuda_time_us / total_cuda_time) * 100

        def build_summary_stats_tree_df(
            node: _ModuleTreeNode,
            parent: _StatsTreeNode | None = None,
            summary_trace: tuple[str] = (),
        ):
            if event_has_module(node.event):
                name = event_module_repr(node.event)
                cuda_time_us = self._cumulative_cuda_time(node)
            elif gpu_kineto_event := self._get_kineto_gpu_event(node):
                name = gpu_kineto_event.name()
                cuda_time_us = gpu_kineto_event.duration_ns() / 1000.0
            else:
                return None

            summary_trace = summary_trace + (name,)
            if summary_trace in summary_dict:
                entry = summary_dict[summary_trace].entry
                entry.cuda_time_us += cuda_time_us
                entry.invocations += 1
                entry.pct_cuda_time = pct_cuda_time(entry.cuda_time_us)
            else:
                new_node = _StatsTreeNode(
                    entry=SummaryStatsEntry(
                        name=name,
                        cuda_time_us=cuda_time_us,
                        pct_cuda_time=pct_cuda_time(cuda_time_us),
                        invocations=1,
                    ),
                    children=[],
                    parent=parent,
                )
                if parent:
                    parent.children.append(new_node)
                summary_dict[summary_trace] = new_node

            for child in node.children:
                build_summary_stats_tree_df(
                    child, summary_dict[summary_trace], summary_trace
                )

            return summary_dict[summary_trace]

        self._summary_stats_tree = []
        for root in self._module_tree:
            self._summary_stats_tree.append(build_summary_stats_tree_df(root))

        def build_model_stats_tree_df(
            node: _ModuleTreeNode, parent: _StatsTreeNode | None = None
        ):
            if event_has_module(
                node.event,
            ):
                name = event_module_repr(node.event)
                cuda_time_us = self._cumulative_cuda_time(node)
                cpu_time_us = node.event.duration_time_ns / 1000
                trace = ""
            elif gpu_kineto_event := self._get_kineto_gpu_event(node):
                name = gpu_kineto_event.name()
                cuda_time_us = gpu_kineto_event.duration_ns() / 1000.0
                cpu_time_us = 0
                trace = node.trace
            else:
                return None

            new_node = _StatsTreeNode(
                entry=ModelStatsEntry(
                    name=name,
                    cpu_time_us=cpu_time_us,
                    cuda_time_us=cuda_time_us,
                    pct_cuda_time=pct_cuda_time(cuda_time_us),
                    trace=trace,
                ),
                parent=parent,
                children=[],
            )
            if parent:
                parent.children.append(new_node)

            for child in node.children:
                build_model_stats_tree_df(child, new_node)

            return new_node

        self._model_stats_tree = []
        for root in self._module_tree:
            self._model_stats_tree.append(build_model_stats_tree_df(root))

    def _flatten_stats_tree(
        self, tree: list[_StatsTreeNode]
    ) -> list[tuple[int, StatsEntry]]:
        entries: list[tuple[int, StatsEntry]] = []

        def df_traversal(node: _StatsTreeNode, depth=0):
            entries.append((depth, node.entry))
            for child in node.children:
                df_traversal(child, depth=depth + 1)

        for root in tree:
            df_traversal(root)

        return entries

    def _convert_stats_tree_to_dict(self, tree: list[_StatsTreeNode]) -> list[dict]:
        root_dicts: list[dict] = []

        def df_traversal(node: _StatsTreeNode, curr_json_list: list[dict]):
            curr_json_list.append({"entry": asdict(node.entry), "children": []})
            for child in node.children:
                df_traversal(child, curr_json_list[-1]["children"])

        for root in tree:
            df_traversal(root, root_dicts)

        return root_dicts

_cumulative_cuda_time

_cumulative_cuda_time(node: _ModuleTreeNode)

Return cuda time in microseconds

Source code in vllm/profiler/layerwise_profile.py
def _cumulative_cuda_time(self, node: _ModuleTreeNode):
    "Return cuda time in microseconds"

    def _cumulative_cuda_time_recursive(node: _ModuleTreeNode):
        if node.is_leaf and (gpu_kineto_event := self._get_kineto_gpu_event(node)):
            return gpu_kineto_event.duration_ns() / 1000.0
        else:
            cumulative_cuda_time = 0
            for child in node.children:
                cumulative_cuda_time += _cumulative_cuda_time_recursive(child)
            return cumulative_cuda_time

    return _cumulative_cuda_time_recursive(node)

layerwise_profile

Bases: profile

Source code in vllm/profiler/layerwise_profile.py
class layerwise_profile(profile):
    def __init__(self, num_running_seqs: int | None = None):
        """
        layerwise profile constructor.

        Args:
            num_running_seqs (Optional[int], optional): When given,
                num_running_seqs will be passed to LayerProfileResults
                for metadata update. Defaults to None.
        """
        super().__init__(
            activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
            record_shapes=True,
            with_stack=True,
            with_modules=True,
            experimental_config=_ExperimentalConfig(verbose=True),
        )

        self.num_running_seqs = num_running_seqs

    def __enter__(self):
        return super().__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        super().__exit__(exc_type, exc_val, exc_tb)
        self.results = LayerwiseProfileResults(
            self.profiler.kineto_results, num_running_seqs=self.num_running_seqs
        )

__init__

__init__(num_running_seqs: int | None = None)

layerwise profile constructor.

Parameters:

Name Type Description Default
num_running_seqs Optional[int]

When given, num_running_seqs will be passed to LayerProfileResults for metadata update. Defaults to None.

None
Source code in vllm/profiler/layerwise_profile.py
def __init__(self, num_running_seqs: int | None = None):
    """
    layerwise profile constructor.

    Args:
        num_running_seqs (Optional[int], optional): When given,
            num_running_seqs will be passed to LayerProfileResults
            for metadata update. Defaults to None.
    """
    super().__init__(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        record_shapes=True,
        with_stack=True,
        with_modules=True,
        experimental_config=_ExperimentalConfig(verbose=True),
    )

    self.num_running_seqs = num_running_seqs