Skip to content

vllm.platforms.cpu

CpuPlatform

Bases: Platform

Source code in vllm/platforms/cpu.py
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
class CpuPlatform(Platform):
    _enum = PlatformEnum.CPU
    device_name: str = "cpu"
    device_type: str = "cpu"
    dispatch_key: str = "CPU"
    dist_backend: str = "gloo"
    device_control_env_var = "CPU_VISIBLE_MEMORY_NODES"

    @property
    def supported_dtypes(self) -> list[torch.dtype]:
        if self.get_cpu_architecture() == CpuArchEnum.POWERPC:
            return [torch.bfloat16, torch.float32]
        elif self.get_cpu_architecture() == CpuArchEnum.ARM and sys.platform.startswith(
            "darwin"
        ):
            if (
                subprocess.check_output(
                    ["sysctl -n hw.optional.arm.FEAT_BF16"], shell=True
                ).strip()
                == b"1"
            ):
                return [torch.bfloat16, torch.float16, torch.float32]
            return [torch.float16, torch.float32]
        elif self.get_cpu_architecture() == CpuArchEnum.RISCV:
            # Workaround for Issue #25655: RISC-V scheduler bug with float16
            #
            # Background:
            # - RISC-V currently uses scalar code path
            # - There is a latent bug in the vLLM scheduler that provides
            # invalid
            #   physical_block_idx values under certain conditions
            # - This bug causes segmentation faults when using float16
            # dtype on RISC-V
            # - Testing shows that forcing float32 successfully bypasses
            # this issue
            #
            # Technical details:
            # - The bug manifests as out-of-bounds physical_block_idx in
            # block_tables
            # - Only occurs on RISC-V hardware
            # tested on Sophgo SG2044
            # - Does not reproduce on x86 or other architectures
            # - Root cause is in Python-level scheduling logic,
            # not C++ kernels
            #
            # This is a temporary workaround until the scheduler bug is fixed.
            # See: https://github.com/vllm-project/vllm/issues/25655
            return [torch.float32]
        # x86/aarch64 CPU has supported both bf16 and fp16 natively.
        return [torch.bfloat16, torch.float16, torch.float32]

    @classmethod
    def get_device_name(cls, device_id: int = 0) -> str:
        return "cpu"

    @classmethod
    def get_attn_backend_cls(
        cls,
        selected_backend: "AttentionBackendEnum",
        attn_selector_config: "AttentionSelectorConfig",
    ) -> str:
        if selected_backend and selected_backend != AttentionBackendEnum.CPU_ATTN:
            logger.info("Cannot use %s backend on CPU.", selected_backend)
        if attn_selector_config.use_mla:
            raise NotImplementedError("MLA is not supported on CPU.")
        if attn_selector_config.use_sparse:
            raise NotImplementedError("Sparse Attention is not supported on CPU.")
        return AttentionBackendEnum.CPU_ATTN.get_path()

    @classmethod
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        from vllm.utils.mem_constants import GiB_bytes
        from vllm.utils.mem_utils import format_gib

        kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
        node_dir = "/sys/devices/system/node"
        if kv_cache_space is None:
            nodes = (
                [d for d in os.listdir(node_dir) if d.startswith("node")]
                if os.path.exists(node_dir)
                else []
            )
            num_numa_nodes = len(nodes) or 1
            free_cpu_memory = psutil.virtual_memory().total // num_numa_nodes
            DEFAULT_CPU_MEM_UTILIZATION = 0.5
            kv_cache_space = int(free_cpu_memory * DEFAULT_CPU_MEM_UTILIZATION)
            logger.warning_once(
                "VLLM_CPU_KVCACHE_SPACE not set. Using %s GiB for KV cache.",
                format_gib(kv_cache_space),
            )
        else:
            kv_cache_space *= GiB_bytes

        return kv_cache_space

    @classmethod
    def set_device(cls, device: torch.device) -> None:
        """
        Set the device for the current platform.
        """
        torch.cpu.set_device(device)

    @classmethod
    def inference_mode(cls):
        return torch.no_grad()

    @classmethod
    def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
        model_config = vllm_config.model_config

        if model_config is not None:
            model_config.disable_cascade_attn = True

        cache_config = vllm_config.cache_config

        if cache_config.block_size is None:
            cache_config.block_size = 128

        if cache_config.block_size % 32 != 0:
            logger.warning(
                "CPU backend prefers block_size is multiples of 32, "
                "otherwise the performance is not optimized."
            )

        scheduler_config = vllm_config.scheduler_config
        # async scheduling is not required on CPU
        scheduler_config.async_scheduling = False
        if (
            scheduler_config.enable_chunked_prefill
            or cache_config.enable_prefix_caching
        ) and is_quantized_kv_cache(cache_config.cache_dtype):
            raise RuntimeError(
                "Chunked-prefill and prefix-cache on the CPU "
                "backend is not compatible with FP8 KV cache."
            )

        if cache_config.cache_dtype.startswith("fp8"):
            logger.warning(
                "CPU backend doesn't support KV cache quantization fallback to auto."
            )
            cache_config.cache_dtype = "auto"

        cache_config.cpu_kvcache_space_bytes = CpuPlatform.get_device_total_memory()

        # reserve at least one core for nixl_connector under p/d case
        if vllm_config.kv_transfer_config and (
            envs.VLLM_CPU_NUM_OF_RESERVED_CPU == 0
            or envs.VLLM_CPU_NUM_OF_RESERVED_CPU is None
        ):
            os.environ["VLLM_CPU_NUM_OF_RESERVED_CPU"] = "1"

        parallel_config = vllm_config.parallel_config
        if (
            parallel_config.world_size > 1
            and parallel_config.distributed_executor_backend is not None
            and parallel_config.distributed_executor_backend != "mp"
        ):
            logger.warning(
                (
                    "%s is not supported on CPU, fallback to mp "
                    "distributed executor backend."
                ),
                parallel_config.distributed_executor_backend,
            )
            parallel_config.distributed_executor_backend = "mp"
        if parallel_config.worker_cls == "auto":
            parallel_config.worker_cls = "vllm.v1.worker.cpu_worker.CPUWorker"
        # Disable DBO
        if parallel_config.enable_dbo:
            logger.warning("Dual-Batch Overlap is not supported on CPU, disabled.")
            parallel_config.enable_dbo = False

        # Note: workaround for v1 gpu_model_runner
        from vllm.config import CompilationMode

        vllm_config.compilation_config.cudagraph_capture_sizes = []

        compilation_config = vllm_config.compilation_config
        if vllm_config.compilation_config.mode == CompilationMode.VLLM_COMPILE:
            # Note: vLLM V1 is using PIECEWISE level compilation, which will
            # take time to compile kernels just-in-time with the inductor
            # backend. For CPU CI tests, most of them are executed fast and
            # compilations consume too much time, even with torch compile
            # cache. So use VLLM_CPU_CI_ENV to indicate the CI environment,
            # and just execute model with dynamo + eager mode to save time.
            # VLLM_CPU_CI_ENV is only used as an internal variable.
            if os.environ.get("VLLM_CPU_CI_ENV", "0") != "0":
                backend = "eager"
            else:
                backend = "inductor"

            compilation_config.mode = CompilationMode.DYNAMO_TRACE_ONCE
            compilation_config.backend = backend
            compilation_config.inductor_compile_config.update(
                {
                    "dce": True,
                    "size_asserts": False,
                    "nan_asserts": False,
                    "epilogue_fusion": True,
                }
            )

        if vllm_config.lora_config is not None:
            compilation_config.mode = CompilationMode.NONE

        assert vllm_config.device_config.device_type == "cpu"

        #
        # Environment variables for CPU executor
        #

        os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"

        # Note: to avoid the error 'nthreads cannot be larger than environment
        # variable "NUMEXPR_MAX_THREADS" (64)'.
        os.environ["NUMEXPR_MAX_THREADS"] = str(get_max_threads())

        if envs.VLLM_CPU_OMP_THREADS_BIND != "nobind":
            # Set default threads num for OpenMP parallel
            os.environ["OMP_NUM_THREADS"] = str(torch.get_num_threads())
        else:
            # In this case, setting the OpenMP configuration via
            # OMP_NUM_THREADS is up to the user.
            logger.info("Disabling binding processes to CPU cores...")

        # Disable torch async compiling which won't work with daemonic processes
        os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"

        # Disable multi-stream for shared experts as no Stream on CPU
        os.environ["VLLM_DISABLE_SHARED_EXPERTS_STREAM"] = "1"

        # Intel OpenMP setting
        ld_preload_str = os.getenv("LD_PRELOAD", "")
        if "libiomp5.so" in ld_preload_str:
            # The time(milliseconds) that a thread should wait after
            # completing the execution of a parallel region, before sleeping.
            os.environ["KMP_BLOCKTIME"] = "1"
            # Prevents the CPU to run into low performance state
            os.environ["KMP_TPAUSE"] = "0"
            # Provides fine granularity parallelism
            os.environ["KMP_FORKJOIN_BARRIER_PATTERN"] = "dist,dist"
            os.environ["KMP_PLAIN_BARRIER_PATTERN"] = "dist,dist"
            os.environ["KMP_REDUCTION_BARRIER_PATTERN"] = "dist,dist"

        if (
            platform.system() == "Linux"
            and Platform.get_cpu_architecture()
            in (CpuArchEnum.ARM, CpuArchEnum.POWERPC)
            and not ("libomp" in ld_preload_str or "libgomp" in ld_preload_str)
        ):
            # We need to LD_PRELOAD PyTorch's libgomp, otherwise only
            # one core will be properly utilized when we thread-bind
            # See: https://github.com/vllm-project/vllm/issues/27369
            # TODO: Remove once:
            # https://github.com/pytorch/pytorch/issues/166087 is fixed

            # We need to find the location of PyTorch's libgomp
            torch_pkg = os.path.dirname(torch.__file__)
            site_root = os.path.dirname(torch_pkg)
            # Search both torch.libs and torch/lib - See: https://github.com/vllm-project/vllm/issues/30470
            torch_libs_paths = [
                os.path.join(site_root, "torch.libs"),
                os.path.join(torch_pkg, "lib"),
            ]
            pytorch_libgomp_so_candidates = []
            for torch_libs in torch_libs_paths:
                pytorch_libgomp_so_candidates.extend(
                    glob.glob(os.path.join(torch_libs, "libgomp*.so*"))
                )
            if pytorch_libgomp_so_candidates:
                pytorch_libgomp_so = pytorch_libgomp_so_candidates[0]
                if ld_preload_str:
                    ld_preload_str += ":"
                ld_preload_str += pytorch_libgomp_so
                os.environ["LD_PRELOAD"] = ld_preload_str

        os.environ["LOCAL_WORLD_SIZE"] = str(
            vllm_config.parallel_config.tensor_parallel_size
        )

        if model_config is not None and model_config.use_mla:
            logger.info(
                "MLA is enabled on a non-GPU platform; forcing chunked "
                "prefill and prefix caching to be disabled."
            )
            vllm_config.scheduler_config.enable_chunked_prefill = False
            vllm_config.scheduler_config.max_num_batched_tokens = max(
                vllm_config.model_config.max_model_len,
                vllm_config.scheduler_config.DEFAULT_MAX_NUM_BATCHED_TOKENS,
            )

    @classmethod
    def get_allowed_cpu_core_node_list(cls) -> tuple[list[int], list[LogicalCPUInfo]]:
        assert platform.system() == "Linux"

        # Init LogicalCPUInfo from lscpu
        lscpu_output = subprocess.check_output(
            "lscpu -J -e=CPU,CORE,NODE", shell=True, text=True
        )
        lscpu_output = re.sub(r'"node":\s*-\s*(,|\n)', r'"node": 0\1', lscpu_output)
        logical_cpu_list: list[LogicalCPUInfo] = json.loads(
            lscpu_output, object_hook=LogicalCPUInfo.json_decoder
        )["cpus"]

        # Filter CPUs with invalid attributes
        logical_cpu_list = [
            x
            for x in logical_cpu_list
            if -1 not in (x.id, x.physical_core, x.numa_node)
        ]

        # Filter allowed CPUs
        if hasattr(os, "sched_getaffinity"):
            allowed_cpu_id_list = os.sched_getaffinity(0)
        else:
            raise NotImplementedError("Unsupported OS")
        logical_cpu_list = [x for x in logical_cpu_list if x.id in allowed_cpu_id_list]

        # Get allowed NUMA nodes
        allowed_numa_nodes = set()
        for x in logical_cpu_list:
            allowed_numa_nodes.add(x.numa_node)  # type: ignore
        allowed_numa_nodes_list = sorted(allowed_numa_nodes)

        env_key = CpuPlatform.device_control_env_var
        if env_key in os.environ and os.environ[env_key] != "":
            visible_nodes = [int(s) for s in os.environ[env_key].split(",")]
            allowed_numa_nodes_list = [
                x for x in sorted(list(set(visible_nodes))) if x in allowed_numa_nodes
            ]

        return allowed_numa_nodes_list, logical_cpu_list

    @classmethod
    def discover_numa_topology(cls) -> list[list[int]]:
        """
        Discover NUMA topology and keep the last physical core of each numa
        into one core group list for nixl start_kv_load()
        """
        SYS_NODE = "/sys/devices/system/node"
        SYS_CPU = "/sys/devices/system/cpu"

        if not (os.path.exists(SYS_NODE) and os.path.exists(SYS_CPU)):
            return []

        core_rsv_for_kv = []
        for node in os.listdir(SYS_NODE):
            if not node.startswith("node") or not node[4:].isdigit():
                continue
            node_path = f"{SYS_NODE}/{node}"

            seen_phys = set()
            for cpu in os.listdir(node_path):
                if not cpu.startswith("cpu") or not cpu[3:].isdigit():
                    continue

                cpu_id = int(cpu[3:])
                # thread_siblings based on cpu_id
                path = f"{SYS_CPU}/cpu{cpu_id}/topology/thread_siblings_list"

                if os.path.exists(path):
                    try:
                        with open(path) as f:
                            s = f.read()
                        cpus: list[int] = []
                        for part in s.strip().split(","):
                            if "-" in part:
                                a, b = map(int, part.split("-"))
                                cpus.extend(range(a, b + 1))
                            else:
                                cpus.append(int(part))
                        siblings = cpus if cpus else [cpu_id]
                    except (OSError, ValueError):
                        siblings = [cpu_id]
                else:
                    siblings = [cpu_id]

                phys = min(siblings)

                if phys not in seen_phys:
                    seen_phys.add(phys)

            if len(seen_phys) > 0:
                core_rsv_for_kv.append(list(seen_phys))

        return core_rsv_for_kv

    @classmethod
    def is_pin_memory_available(cls) -> bool:
        return False

    @classmethod
    def get_punica_wrapper(cls) -> str:
        return "vllm.lora.punica_wrapper.punica_cpu.PunicaWrapperCPU"

    @classmethod
    def get_device_communicator_cls(cls) -> str:
        """
        Get device specific communicator class for distributed communication.
        """
        return "vllm.distributed.device_communicators.cpu_communicator.CpuCommunicator"  # noqa

    @classmethod
    def supports_structured_output(cls) -> bool:
        return True

    @classmethod
    def opaque_attention_op(cls) -> bool:
        return True

    @classmethod
    def support_hybrid_kv_cache(cls) -> bool:
        return True

discover_numa_topology classmethod

discover_numa_topology() -> list[list[int]]

Discover NUMA topology and keep the last physical core of each numa into one core group list for nixl start_kv_load()

Source code in vllm/platforms/cpu.py
@classmethod
def discover_numa_topology(cls) -> list[list[int]]:
    """
    Discover NUMA topology and keep the last physical core of each numa
    into one core group list for nixl start_kv_load()
    """
    SYS_NODE = "/sys/devices/system/node"
    SYS_CPU = "/sys/devices/system/cpu"

    if not (os.path.exists(SYS_NODE) and os.path.exists(SYS_CPU)):
        return []

    core_rsv_for_kv = []
    for node in os.listdir(SYS_NODE):
        if not node.startswith("node") or not node[4:].isdigit():
            continue
        node_path = f"{SYS_NODE}/{node}"

        seen_phys = set()
        for cpu in os.listdir(node_path):
            if not cpu.startswith("cpu") or not cpu[3:].isdigit():
                continue

            cpu_id = int(cpu[3:])
            # thread_siblings based on cpu_id
            path = f"{SYS_CPU}/cpu{cpu_id}/topology/thread_siblings_list"

            if os.path.exists(path):
                try:
                    with open(path) as f:
                        s = f.read()
                    cpus: list[int] = []
                    for part in s.strip().split(","):
                        if "-" in part:
                            a, b = map(int, part.split("-"))
                            cpus.extend(range(a, b + 1))
                        else:
                            cpus.append(int(part))
                    siblings = cpus if cpus else [cpu_id]
                except (OSError, ValueError):
                    siblings = [cpu_id]
            else:
                siblings = [cpu_id]

            phys = min(siblings)

            if phys not in seen_phys:
                seen_phys.add(phys)

        if len(seen_phys) > 0:
            core_rsv_for_kv.append(list(seen_phys))

    return core_rsv_for_kv

get_device_communicator_cls classmethod

get_device_communicator_cls() -> str

Get device specific communicator class for distributed communication.

Source code in vllm/platforms/cpu.py
@classmethod
def get_device_communicator_cls(cls) -> str:
    """
    Get device specific communicator class for distributed communication.
    """
    return "vllm.distributed.device_communicators.cpu_communicator.CpuCommunicator"  # noqa

set_device classmethod

set_device(device: device) -> None

Set the device for the current platform.

Source code in vllm/platforms/cpu.py
@classmethod
def set_device(cls, device: torch.device) -> None:
    """
    Set the device for the current platform.
    """
    torch.cpu.set_device(device)