Skip to content

vllm.model_executor.models.qwen2_5_omni_thinker

Inference-only Qwen2.5-Omni model (thinker part).

Qwen2_5OmniAudioFeatureInputs

Bases: TensorSchema

Dimensions
  • na: Number of audios
  • nmb: Number of mel bins
  • msl: Maximum sequence length
  • tsl: Total sequence length
Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
class Qwen2_5OmniAudioFeatureInputs(TensorSchema):
    """
    Dimensions:
        - na: Number of audios
        - nmb: Number of mel bins
        - msl: Maximum sequence length
        - tsl: Total sequence length
    """

    type: Literal["audio_features"]
    input_features: Annotated[
        torch.Tensor | list[torch.Tensor],
        TensorShape("nmb", "tsl", dynamic_dims={"tsl"}),
    ]

    audio_feature_lengths: Annotated[torch.Tensor, TensorShape("na")]

    feature_attention_mask: Annotated[
        torch.Tensor | list[torch.Tensor],
        TensorShape("na", "msl", dynamic_dims={"msl"}),
    ]

Qwen2_5OmniThinkerForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsPP, SupportsLoRA, SupportsMRoPE, Qwen2_5OmniConditionalGenerationMixin

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
@MULTIMODAL_REGISTRY.register_processor(
    Qwen2_5OmniThinkerMultiModalProcessor,
    info=Qwen2_5OmniThinkerProcessingInfo,
    dummy_inputs=Qwen2_5OmniThinkerDummyInputsBuilder,
)
class Qwen2_5OmniThinkerForConditionalGeneration(
    nn.Module,
    SupportsMultiModal,
    SupportsPP,
    SupportsLoRA,
    SupportsMRoPE,
    Qwen2_5OmniConditionalGenerationMixin,
):
    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            "thinker.lm_head.": "language_model.lm_head.",
            "thinker.model.": "language_model.model.",
            "thinker.": "",
        }
    )
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "attn.qkv": [
            "attn.q",
            "attn.k",
            "attn.v",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> str | None:
        if modality.startswith("image"):
            return "<|vision_start|><|IMAGE|><|vision_end|>"
        if modality.startswith("video"):
            return "<|vision_start|><|VIDEO|><|vision_end|>"
        if modality.startswith("audio"):
            return f"Audio {i}: <|audio_bos|><|AUDIO|><|audio_eos|>"

        raise ValueError("Only image, video or audio modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        self.vllm_config = vllm_config
        thinker_config: Qwen2_5OmniThinkerConfig = (
            vllm_config.model_config.hf_config.thinker_config
        )
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config
        self.config = thinker_config
        self.multimodal_config = multimodal_config
        self.quant_config = quant_config

        # force "use_flash_attention_2=True" to audio tower to align
        # the results.
        if flash_attn is not None:
            audio_config = thinker_config.audio_config
            audio_config._attn_implementation_autoset = True
            audio_config._attn_implementation = "flash_attention_2"
        else:
            logger.warning(
                "flash_attn is not available, the model may not yield the "
                "exactly same result as the transformers implementation "
                "in the audio tower part."
            )

        with self._mark_tower_model(vllm_config, "audio"):
            self.audio_tower = Qwen2_5OmniAudioEncoder(thinker_config.audio_config)

        with self._mark_tower_model(vllm_config, {"image", "video"}):
            self.visual = Qwen2_5_VisionTransformer(
                vision_config=thinker_config.vision_config,
                norm_eps=getattr(thinker_config.text_config, "rms_norm_eps", 1e-6),
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "visual"),
            )

        with self._mark_language_model(vllm_config):
            self.language_model = init_vllm_registered_model(
                vllm_config=vllm_config,
                prefix=maybe_prefix(prefix, "language_model"),
                hf_config=thinker_config.text_config,
                architectures=["Qwen2ForCausalLM"],
            )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors
        )

    def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
        mm_input_by_modality = {}

        # Preserve the order of modalities if there are multiple of them
        # from the order of kwargs.
        for input_key in kwargs:
            if (
                input_key in ("pixel_values", "image_embeds")
                and "image" not in mm_input_by_modality
            ):
                mm_input_by_modality["image"] = self._parse_and_validate_image_input(
                    **kwargs
                )
            if (
                input_key in ("pixel_values_videos", "video_embeds")
                and "video" not in mm_input_by_modality
            ):
                mm_input_by_modality["video"] = self._parse_and_validate_video_input(
                    **kwargs
                )
            if (
                input_key in ("input_audio_features")
                and "audio" not in mm_input_by_modality
            ):
                mm_input_by_modality["audio"] = self._parse_and_validate_audio_input(
                    **kwargs
                )
        return mm_input_by_modality

    def _get_audio_for_video_mapping(
        self, mm_features: list[MultiModalFeatureSpec]
    ) -> tuple[dict[int, int], set[int]]:
        """
        Map video offset -> paired audio_feature_length for use_audio_in_video.

        When use_audio_in_video=True, audio is interleaved within video chunks.
        The pairing is based on feature order in mm_features.

        Returns:
            Tuple of (video_offset -> audio_feature_length mapping,
                      set of paired audio offsets to skip)
        """
        videos_with_audio = [
            f
            for f in mm_features
            if f.modality == "video"
            and f.data.get("use_audio_in_video")
            and f.data["use_audio_in_video"].data.item()
        ]
        audios = [f for f in mm_features if f.modality == "audio"]

        # Pair videos with audio features (assumes matching order)
        mapping: dict[int, int] = {}
        paired_audio_offsets: set[int] = set()
        for i, video_f in enumerate(videos_with_audio):
            if i < len(audios):
                audio_len = audios[i].data["audio_feature_lengths"].data.item()
                mapping[video_f.mm_position.offset] = audio_len
                paired_audio_offsets.add(audios[i].mm_position.offset)
        return mapping, paired_audio_offsets

    def _compute_audio_token_count(self, audio_feature_length: int) -> int:
        """Compute audio tokens from feature length."""
        return ((audio_feature_length - 1) // 2 + 1 - 2) // 2 + 1

    def iter_mm_features(
        self, mm_features: list[MultiModalFeatureSpec]
    ) -> Iterator[tuple[int, str, dict[str, Any]]]:
        """
        Iterate over multimodal features sorted by position offset.

        Yields: (offset, modality, feature_data) where feature_data contains:
        - image: {"grid_t", "grid_h", "grid_w", "t_factor"}
        - video: {"grid_t", "grid_h", "grid_w", "t_factor",
                  "use_audio_in_video", "audio_feature_length"}
        - audio: {"audio_feature_length"}
        """
        thinker_config = self.config
        spatial_merge_size = thinker_config.vision_config.spatial_merge_size
        tokens_per_second = getattr(
            thinker_config.vision_config, "tokens_per_second", 25
        )

        # Sort features by offset first, then pair audio with video
        sorted_features = sorted(mm_features, key=lambda f: f.mm_position.offset)
        audio_for_video, paired_audio_offsets = self._get_audio_for_video_mapping(
            sorted_features
        )

        for mm_feature in sorted_features:
            offset = mm_feature.mm_position.offset
            modality = mm_feature.modality

            if modality == "image":
                t, h, w = mm_feature.data["image_grid_thw"].data.tolist()
                yield (
                    offset,
                    "image",
                    {
                        "grid_t": t,
                        "grid_h": h // spatial_merge_size,
                        "grid_w": w // spatial_merge_size,
                        "t_factor": 1.0 * tokens_per_second,
                    },
                )
            elif modality == "video":
                t, h, w = mm_feature.data["video_grid_thw"].data.tolist()
                second_per_grid_ts = 1.0
                if mm_feature.data.get("second_per_grid_ts"):
                    second_per_grid_ts = mm_feature.data[
                        "second_per_grid_ts"
                    ].data.item()
                use_audio_in_video = False
                if mm_feature.data.get("use_audio_in_video"):
                    use_audio_in_video = bool(
                        mm_feature.data["use_audio_in_video"].data.item()
                    )

                yield (
                    offset,
                    "video",
                    {
                        "grid_t": t,
                        "grid_h": h // spatial_merge_size,
                        "grid_w": w // spatial_merge_size,
                        "t_factor": second_per_grid_ts * tokens_per_second,
                        "use_audio_in_video": use_audio_in_video,
                        "audio_feature_length": audio_for_video.get(offset),
                    },
                )
            elif modality == "audio":
                # Skip audio that's paired with video (handled in video case)
                if offset not in paired_audio_offsets:
                    audio_len = mm_feature.data["audio_feature_lengths"].data.item()
                    yield offset, "audio", {"audio_feature_length": audio_len}

    def _compute_interleaved_positions(
        self, start_idx: int, data: dict[str, Any]
    ) -> tuple[np.ndarray, int]:
        """
        Compute positions for interleaved video+audio chunks.

        Returns: (position_ids, total_token_count)
        """
        grid_t = data["grid_t"]
        grid_h = data["grid_h"]
        grid_w = data["grid_w"]
        t_factor = data["t_factor"]
        audio_len = data["audio_feature_length"]

        thinker_config = self.config
        tokens_per_second = getattr(
            thinker_config.vision_config, "tokens_per_second", 25
        )
        seconds_per_chunk = thinker_config.seconds_per_chunk
        t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)

        # Temporal indices with scaling
        t_index = (np.arange(grid_t) * t_factor).astype(np.int64)

        # Split temporal indices into chunks
        t_index_split_chunk: list[list[int]] = [
            [] for _ in range((int(t_index.max()) // t_ntoken_per_chunk) + 1)
        ]
        for t_val in t_index:
            idx = int(t_val) // t_ntoken_per_chunk
            t_index_split_chunk[idx].append(int(t_val))

        pure_audio_len = self._compute_audio_token_count(audio_len)
        added_audio_len = 0
        pos_ids_list: list[np.ndarray] = []
        audio_start_idx = start_idx

        for t_chunk in t_index_split_chunk:
            if not t_chunk:
                continue

            chunk_t = len(t_chunk)

            # Build vision positions for this chunk
            h_indices = np.tile(
                np.arange(grid_h).reshape(1, -1, 1), (chunk_t, 1, grid_w)
            ).flatten()
            w_indices = np.tile(
                np.arange(grid_w).reshape(1, 1, -1), (chunk_t, grid_h, 1)
            ).flatten()
            t_indices = np.repeat(np.array(t_chunk), grid_h * grid_w)

            vision_pos = np.stack([t_indices, h_indices, w_indices]) + start_idx
            pos_ids_list.append(vision_pos)

            # Audio tokens for this chunk
            audio_chunk_size = min(t_ntoken_per_chunk, pure_audio_len - added_audio_len)
            if audio_chunk_size > 0:
                audio_pos = (
                    np.broadcast_to(np.arange(audio_chunk_size), (3, audio_chunk_size))
                    + audio_start_idx
                )
                pos_ids_list.append(audio_pos)
                audio_start_idx = audio_start_idx + audio_chunk_size
                added_audio_len += audio_chunk_size

        # Handle remaining audio that doesn't fit in chunks
        if added_audio_len < pure_audio_len:
            remaining = pure_audio_len - added_audio_len
            remaining_audio_pos = (
                np.broadcast_to(np.arange(remaining), (3, remaining)) + audio_start_idx
            )
            pos_ids_list.append(remaining_audio_pos)

        # Calculate total token count
        vision_tokens = grid_t * grid_h * grid_w
        total_tokens = vision_tokens + pure_audio_len

        return np.concatenate(pos_ids_list, axis=1), total_tokens

    def get_mrope_input_positions(
        self,
        input_tokens: list[int],
        mm_features: list[MultiModalFeatureSpec],
    ) -> tuple[torch.Tensor, int]:
        """
        Compute M-RoPE input positions using mm_features directly.

        Example for use_audio_in_video case:
            (V_i are vision position ids, A_i are audio position ids)

            |V_1 ...    V_n|A_1 ...   A_n|V_n+1 ... V_2n|A_n+1 ... A_2n|...
            |vision chunk 1|audio chunk 1|vision chunk 2|audio chunk 2 |...
        """
        llm_pos_ids_list: list[np.ndarray] = []
        st = 0

        for offset, modality, data in self.iter_mm_features(mm_features):
            # Add text segment before this feature
            text_len = offset - st
            st_idx = int(llm_pos_ids_list[-1].max()) + 1 if llm_pos_ids_list else 0
            if text_len > 0:
                llm_pos_ids_list.append(
                    np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
                )
                st_idx += text_len

            if modality == "audio":
                # Standalone audio positions
                audio_tokens = self._compute_audio_token_count(
                    data["audio_feature_length"]
                )
                llm_pos_ids_list.append(
                    np.broadcast_to(np.arange(audio_tokens), (3, audio_tokens)) + st_idx
                )
                st = offset + audio_tokens

            elif modality == "image":
                # Image uses np.indices like Qwen2-VL
                grid_t = data["grid_t"]
                grid_h = data["grid_h"]
                grid_w = data["grid_w"]
                t_factor = data["t_factor"]

                grid_indices = np.indices((grid_t, grid_h, grid_w))
                if t_factor != 1.0:
                    grid_indices[0] = (grid_indices[0] * t_factor).astype(np.int64)
                llm_pos_ids_list.append(grid_indices.reshape(3, -1) + st_idx)
                st = offset + grid_t * grid_h * grid_w

            elif modality == "video":
                grid_t = data["grid_t"]
                grid_h = data["grid_h"]
                grid_w = data["grid_w"]
                t_factor = data["t_factor"]

                if not data["use_audio_in_video"]:
                    # Simple video (same as Qwen2-VL)
                    grid_indices = np.indices((grid_t, grid_h, grid_w))
                    if t_factor != 1.0:
                        grid_indices[0] = (grid_indices[0] * t_factor).astype(np.int64)
                    llm_pos_ids_list.append(grid_indices.reshape(3, -1) + st_idx)
                    st = offset + grid_t * grid_h * grid_w
                else:
                    # Interleaved video+audio
                    pos_ids, token_count = self._compute_interleaved_positions(
                        st_idx, data
                    )
                    llm_pos_ids_list.append(pos_ids)
                    st = offset + token_count

        # Add trailing text
        if st < len(input_tokens):
            st_idx = int(llm_pos_ids_list[-1].max()) + 1 if llm_pos_ids_list else 0
            text_len = len(input_tokens) - st
            llm_pos_ids_list.append(
                np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
            )

        llm_positions = np.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
        mrope_position_delta = int(llm_positions.max()) + 1 - len(input_tokens)

        return torch.from_numpy(llm_positions), mrope_position_delta

    def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
        mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
        if not mm_input_by_modality:
            return []

        # The result multimodal_embeddings is tuple of tensors, with each
        # tensor corresponding to a multimodal data item (image or video).
        multimodal_embeddings: tuple[torch.Tensor, ...] = ()

        # NOTE: It is important to iterate over the keys in this dictionary
        # to preserve the order of the modalities.
        for modality in mm_input_by_modality:
            multimodal_input = mm_input_by_modality[modality]
            if modality == "image":
                image_embeddings = self._process_image_input(multimodal_input)
                multimodal_embeddings += tuple(image_embeddings)
            if modality == "video":
                video_embeddings = self._process_video_input(multimodal_input)
                multimodal_embeddings += tuple(video_embeddings)
            if modality == "audio":
                audio_embeddings = self._process_audio_input(multimodal_input)
                multimodal_embeddings += tuple(audio_embeddings)
        return multimodal_embeddings

    def embed_input_ids(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: MultiModalEmbeddings | None = None,
        *,
        is_multimodal: torch.Tensor | None = None,
        handle_oov_mm_token: bool = False,
    ) -> torch.Tensor:
        from .utils import _merge_multimodal_embeddings

        if multimodal_embeddings is None or is_multimodal is None:
            return super().embed_input_ids(input_ids)

        inputs_embeds = self._embed_text_input_ids(
            input_ids,
            self.get_language_model().embed_input_ids,
            is_multimodal=is_multimodal,
            handle_oov_mm_token=handle_oov_mm_token,
        )

        if len(multimodal_embeddings) == 0:
            return inputs_embeds

        # Check for audio-in-video: interleaved video and audio tokens
        # in the multimodal region.
        video_token_id = self.config.video_token_index
        audio_token_id = self.config.audio_token_index

        is_video = is_multimodal & (input_ids == video_token_id)
        is_audio = is_multimodal & (input_ids == audio_token_id)

        num_video = is_video.sum().item()
        num_audio = is_audio.sum().item()

        if check_interleaved_audio_video(is_video, is_audio, num_video, num_audio):
            return merge_interleaved_embeddings(
                inputs_embeds,
                multimodal_embeddings,
                is_video,
                is_audio,
                is_multimodal,
                num_video,
                num_audio,
            )

        # Default: standard merge (no interleaving)
        return _merge_multimodal_embeddings(
            inputs_embeds, multimodal_embeddings, is_multimodal
        )

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs: object,
    ) -> torch.Tensor | IntermediateTensors:
        if intermediate_tensors is not None:
            inputs_embeds = None

        hidden_states = self.language_model.model(
            input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor | None:
        return self.language_model.compute_logits(hidden_states)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self, skip_prefixes=["talker.", "token2wav."])
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(
            language_model="language_model",
            connector="merger.",
            tower_model=["visual.", "audio_tower."],
        )

_compute_audio_token_count

_compute_audio_token_count(
    audio_feature_length: int,
) -> int

Compute audio tokens from feature length.

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def _compute_audio_token_count(self, audio_feature_length: int) -> int:
    """Compute audio tokens from feature length."""
    return ((audio_feature_length - 1) // 2 + 1 - 2) // 2 + 1

_compute_interleaved_positions

_compute_interleaved_positions(
    start_idx: int, data: dict[str, Any]
) -> tuple[ndarray, int]

Compute positions for interleaved video+audio chunks.

Returns: (position_ids, total_token_count)

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def _compute_interleaved_positions(
    self, start_idx: int, data: dict[str, Any]
) -> tuple[np.ndarray, int]:
    """
    Compute positions for interleaved video+audio chunks.

    Returns: (position_ids, total_token_count)
    """
    grid_t = data["grid_t"]
    grid_h = data["grid_h"]
    grid_w = data["grid_w"]
    t_factor = data["t_factor"]
    audio_len = data["audio_feature_length"]

    thinker_config = self.config
    tokens_per_second = getattr(
        thinker_config.vision_config, "tokens_per_second", 25
    )
    seconds_per_chunk = thinker_config.seconds_per_chunk
    t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)

    # Temporal indices with scaling
    t_index = (np.arange(grid_t) * t_factor).astype(np.int64)

    # Split temporal indices into chunks
    t_index_split_chunk: list[list[int]] = [
        [] for _ in range((int(t_index.max()) // t_ntoken_per_chunk) + 1)
    ]
    for t_val in t_index:
        idx = int(t_val) // t_ntoken_per_chunk
        t_index_split_chunk[idx].append(int(t_val))

    pure_audio_len = self._compute_audio_token_count(audio_len)
    added_audio_len = 0
    pos_ids_list: list[np.ndarray] = []
    audio_start_idx = start_idx

    for t_chunk in t_index_split_chunk:
        if not t_chunk:
            continue

        chunk_t = len(t_chunk)

        # Build vision positions for this chunk
        h_indices = np.tile(
            np.arange(grid_h).reshape(1, -1, 1), (chunk_t, 1, grid_w)
        ).flatten()
        w_indices = np.tile(
            np.arange(grid_w).reshape(1, 1, -1), (chunk_t, grid_h, 1)
        ).flatten()
        t_indices = np.repeat(np.array(t_chunk), grid_h * grid_w)

        vision_pos = np.stack([t_indices, h_indices, w_indices]) + start_idx
        pos_ids_list.append(vision_pos)

        # Audio tokens for this chunk
        audio_chunk_size = min(t_ntoken_per_chunk, pure_audio_len - added_audio_len)
        if audio_chunk_size > 0:
            audio_pos = (
                np.broadcast_to(np.arange(audio_chunk_size), (3, audio_chunk_size))
                + audio_start_idx
            )
            pos_ids_list.append(audio_pos)
            audio_start_idx = audio_start_idx + audio_chunk_size
            added_audio_len += audio_chunk_size

    # Handle remaining audio that doesn't fit in chunks
    if added_audio_len < pure_audio_len:
        remaining = pure_audio_len - added_audio_len
        remaining_audio_pos = (
            np.broadcast_to(np.arange(remaining), (3, remaining)) + audio_start_idx
        )
        pos_ids_list.append(remaining_audio_pos)

    # Calculate total token count
    vision_tokens = grid_t * grid_h * grid_w
    total_tokens = vision_tokens + pure_audio_len

    return np.concatenate(pos_ids_list, axis=1), total_tokens

_get_audio_for_video_mapping

_get_audio_for_video_mapping(
    mm_features: list[MultiModalFeatureSpec],
) -> tuple[dict[int, int], set[int]]

Map video offset -> paired audio_feature_length for use_audio_in_video.

When use_audio_in_video=True, audio is interleaved within video chunks. The pairing is based on feature order in mm_features.

Returns:

Type Description
tuple[dict[int, int], set[int]]

Tuple of (video_offset -> audio_feature_length mapping, set of paired audio offsets to skip)

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def _get_audio_for_video_mapping(
    self, mm_features: list[MultiModalFeatureSpec]
) -> tuple[dict[int, int], set[int]]:
    """
    Map video offset -> paired audio_feature_length for use_audio_in_video.

    When use_audio_in_video=True, audio is interleaved within video chunks.
    The pairing is based on feature order in mm_features.

    Returns:
        Tuple of (video_offset -> audio_feature_length mapping,
                  set of paired audio offsets to skip)
    """
    videos_with_audio = [
        f
        for f in mm_features
        if f.modality == "video"
        and f.data.get("use_audio_in_video")
        and f.data["use_audio_in_video"].data.item()
    ]
    audios = [f for f in mm_features if f.modality == "audio"]

    # Pair videos with audio features (assumes matching order)
    mapping: dict[int, int] = {}
    paired_audio_offsets: set[int] = set()
    for i, video_f in enumerate(videos_with_audio):
        if i < len(audios):
            audio_len = audios[i].data["audio_feature_lengths"].data.item()
            mapping[video_f.mm_position.offset] = audio_len
            paired_audio_offsets.add(audios[i].mm_position.offset)
    return mapping, paired_audio_offsets

get_mm_mapping

get_mm_mapping() -> MultiModelKeys

Get the module prefix in multimodal models

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def get_mm_mapping(self) -> MultiModelKeys:
    """
    Get the module prefix in multimodal models
    """
    return MultiModelKeys.from_string_field(
        language_model="language_model",
        connector="merger.",
        tower_model=["visual.", "audio_tower."],
    )

get_mrope_input_positions

get_mrope_input_positions(
    input_tokens: list[int],
    mm_features: list[MultiModalFeatureSpec],
) -> tuple[Tensor, int]

Compute M-RoPE input positions using mm_features directly.

Example for use_audio_in_video case

(V_i are vision position ids, A_i are audio position ids)

|V_1 ... V_n|A_1 ... A_n|V_n+1 ... V_2n|A_n+1 ... A_2n|... |vision chunk 1|audio chunk 1|vision chunk 2|audio chunk 2 |...

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def get_mrope_input_positions(
    self,
    input_tokens: list[int],
    mm_features: list[MultiModalFeatureSpec],
) -> tuple[torch.Tensor, int]:
    """
    Compute M-RoPE input positions using mm_features directly.

    Example for use_audio_in_video case:
        (V_i are vision position ids, A_i are audio position ids)

        |V_1 ...    V_n|A_1 ...   A_n|V_n+1 ... V_2n|A_n+1 ... A_2n|...
        |vision chunk 1|audio chunk 1|vision chunk 2|audio chunk 2 |...
    """
    llm_pos_ids_list: list[np.ndarray] = []
    st = 0

    for offset, modality, data in self.iter_mm_features(mm_features):
        # Add text segment before this feature
        text_len = offset - st
        st_idx = int(llm_pos_ids_list[-1].max()) + 1 if llm_pos_ids_list else 0
        if text_len > 0:
            llm_pos_ids_list.append(
                np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
            )
            st_idx += text_len

        if modality == "audio":
            # Standalone audio positions
            audio_tokens = self._compute_audio_token_count(
                data["audio_feature_length"]
            )
            llm_pos_ids_list.append(
                np.broadcast_to(np.arange(audio_tokens), (3, audio_tokens)) + st_idx
            )
            st = offset + audio_tokens

        elif modality == "image":
            # Image uses np.indices like Qwen2-VL
            grid_t = data["grid_t"]
            grid_h = data["grid_h"]
            grid_w = data["grid_w"]
            t_factor = data["t_factor"]

            grid_indices = np.indices((grid_t, grid_h, grid_w))
            if t_factor != 1.0:
                grid_indices[0] = (grid_indices[0] * t_factor).astype(np.int64)
            llm_pos_ids_list.append(grid_indices.reshape(3, -1) + st_idx)
            st = offset + grid_t * grid_h * grid_w

        elif modality == "video":
            grid_t = data["grid_t"]
            grid_h = data["grid_h"]
            grid_w = data["grid_w"]
            t_factor = data["t_factor"]

            if not data["use_audio_in_video"]:
                # Simple video (same as Qwen2-VL)
                grid_indices = np.indices((grid_t, grid_h, grid_w))
                if t_factor != 1.0:
                    grid_indices[0] = (grid_indices[0] * t_factor).astype(np.int64)
                llm_pos_ids_list.append(grid_indices.reshape(3, -1) + st_idx)
                st = offset + grid_t * grid_h * grid_w
            else:
                # Interleaved video+audio
                pos_ids, token_count = self._compute_interleaved_positions(
                    st_idx, data
                )
                llm_pos_ids_list.append(pos_ids)
                st = offset + token_count

    # Add trailing text
    if st < len(input_tokens):
        st_idx = int(llm_pos_ids_list[-1].max()) + 1 if llm_pos_ids_list else 0
        text_len = len(input_tokens) - st
        llm_pos_ids_list.append(
            np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
        )

    llm_positions = np.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
    mrope_position_delta = int(llm_positions.max()) + 1 - len(input_tokens)

    return torch.from_numpy(llm_positions), mrope_position_delta

iter_mm_features

iter_mm_features(
    mm_features: list[MultiModalFeatureSpec],
) -> Iterator[tuple[int, str, dict[str, Any]]]

Iterate over multimodal features sorted by position offset.

Yields: (offset, modality, feature_data) where feature_data contains: - image: {"grid_t", "grid_h", "grid_w", "t_factor"} - video: {"grid_t", "grid_h", "grid_w", "t_factor", "use_audio_in_video", "audio_feature_length"} - audio: {"audio_feature_length"}

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def iter_mm_features(
    self, mm_features: list[MultiModalFeatureSpec]
) -> Iterator[tuple[int, str, dict[str, Any]]]:
    """
    Iterate over multimodal features sorted by position offset.

    Yields: (offset, modality, feature_data) where feature_data contains:
    - image: {"grid_t", "grid_h", "grid_w", "t_factor"}
    - video: {"grid_t", "grid_h", "grid_w", "t_factor",
              "use_audio_in_video", "audio_feature_length"}
    - audio: {"audio_feature_length"}
    """
    thinker_config = self.config
    spatial_merge_size = thinker_config.vision_config.spatial_merge_size
    tokens_per_second = getattr(
        thinker_config.vision_config, "tokens_per_second", 25
    )

    # Sort features by offset first, then pair audio with video
    sorted_features = sorted(mm_features, key=lambda f: f.mm_position.offset)
    audio_for_video, paired_audio_offsets = self._get_audio_for_video_mapping(
        sorted_features
    )

    for mm_feature in sorted_features:
        offset = mm_feature.mm_position.offset
        modality = mm_feature.modality

        if modality == "image":
            t, h, w = mm_feature.data["image_grid_thw"].data.tolist()
            yield (
                offset,
                "image",
                {
                    "grid_t": t,
                    "grid_h": h // spatial_merge_size,
                    "grid_w": w // spatial_merge_size,
                    "t_factor": 1.0 * tokens_per_second,
                },
            )
        elif modality == "video":
            t, h, w = mm_feature.data["video_grid_thw"].data.tolist()
            second_per_grid_ts = 1.0
            if mm_feature.data.get("second_per_grid_ts"):
                second_per_grid_ts = mm_feature.data[
                    "second_per_grid_ts"
                ].data.item()
            use_audio_in_video = False
            if mm_feature.data.get("use_audio_in_video"):
                use_audio_in_video = bool(
                    mm_feature.data["use_audio_in_video"].data.item()
                )

            yield (
                offset,
                "video",
                {
                    "grid_t": t,
                    "grid_h": h // spatial_merge_size,
                    "grid_w": w // spatial_merge_size,
                    "t_factor": second_per_grid_ts * tokens_per_second,
                    "use_audio_in_video": use_audio_in_video,
                    "audio_feature_length": audio_for_video.get(offset),
                },
            )
        elif modality == "audio":
            # Skip audio that's paired with video (handled in video case)
            if offset not in paired_audio_offsets:
                audio_len = mm_feature.data["audio_feature_lengths"].data.item()
                yield offset, "audio", {"audio_feature_length": audio_len}

Qwen2_5OmniThinkerMultiModalProcessor

Bases: BaseMultiModalProcessor[Qwen2_5OmniThinkerProcessingInfo]

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
class Qwen2_5OmniThinkerMultiModalProcessor(
    BaseMultiModalProcessor[Qwen2_5OmniThinkerProcessingInfo]
):
    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        mm_data = dict(mm_data)
        audios = mm_data.pop("audios", [])

        # NOTE: WhisperFeatureExtractor cannot handle empty list of audios
        if audios:
            # NOTE: Qwen2.5-Omni processor accept "audio"
            mm_data["audio"] = audios
            mm_kwargs = dict(
                **mm_kwargs,
            )

        hf_inputs = super()._call_hf_processor(
            prompt=prompt,
            mm_data=mm_data,
            mm_kwargs=mm_kwargs,
            tok_kwargs=tok_kwargs,
        )

        input_features = hf_inputs.pop("input_features", None)
        feature_attention_mask = hf_inputs.get("feature_attention_mask", None)
        if "input_audio_features" not in hf_inputs and input_features is not None:
            if feature_attention_mask is not None:
                input_features = input_features.permute(0, 2, 1)[
                    feature_attention_mask.bool()
                ].permute(1, 0)
            hf_inputs["input_audio_features"] = input_features
        if (
            "audio_feature_lengths" not in hf_inputs
            and feature_attention_mask is not None
        ):
            hf_inputs["audio_feature_lengths"] = feature_attention_mask.sum(-1)

        video_second_per_grid = hf_inputs.get("video_second_per_grid", None)
        if video_second_per_grid is not None:
            hf_inputs["second_per_grid_ts"] = video_second_per_grid

        use_audio_in_video = mm_kwargs.get("use_audio_in_video", False)
        hf_inputs["use_audio_in_video"] = torch.tensor(use_audio_in_video)

        return hf_inputs

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return create_qwen2_5_omni_thinker_field_factory(
            self.info.get_hf_config().vision_config.spatial_merge_size
        )(hf_inputs)

    def _derive_audio_from_video_placeholders(
        self,
        placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
        mm_prompt_updates: MultiModalPromptUpdates,
    ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
        """
        Helper to derive audio placeholders from video placeholders when
        use_audio_in_video=True.
        """
        if "video" not in placeholders:
            return placeholders

        # Validate audio and video counts match
        num_videos = len(placeholders["video"])
        num_audios = len(mm_prompt_updates.get("audio", []))
        if num_audios != num_videos:
            raise ValueError(
                f"use_audio_in_video requires equal number of audio and video "
                f"items, got {num_audios=}, {num_videos=}"
            )

        tokenizer = self.info.get_tokenizer()
        processor = self.info.get_hf_processor()
        audio_token_id = tokenizer.get_vocab()[processor.audio_token]
        video_token_id = tokenizer.get_vocab()[processor.video_token]

        result_placeholders = dict(placeholders)
        audio_placeholders = []
        video_placeholders = []

        # Each video is paired with one audio
        for video_idx, video_placeholder in enumerate(placeholders["video"]):
            # Create is_embed mask selecting only audio tokens
            audio_is_embed = torch.tensor(video_placeholder.tokens) == audio_token_id

            # Create is_embed mask selecting only video tokens
            video_is_embed = torch.tensor(video_placeholder.tokens) == video_token_id

            audio_placeholder = PlaceholderFeaturesInfo(
                modality="audio",
                item_idx=video_idx,
                start_idx=video_placeholder.start_idx,
                tokens=video_placeholder.tokens,
                is_embed=audio_is_embed,
            )
            audio_placeholders.append(audio_placeholder)

            # Update video placeholder with is_embed mask
            video_placeholder_with_mask = PlaceholderFeaturesInfo(
                modality="video",
                item_idx=video_idx,
                start_idx=video_placeholder.start_idx,
                tokens=video_placeholder.tokens,
                is_embed=video_is_embed,
            )
            video_placeholders.append(video_placeholder_with_mask)

        result_placeholders["audio"] = audio_placeholders
        result_placeholders["video"] = video_placeholders
        return result_placeholders

    def _maybe_apply_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        prompt_ids: list[int],
        mm_kwargs: MultiModalKwargsItems,
        mm_prompt_updates: MultiModalPromptUpdates,
        is_update_applied: bool,
    ) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
        """
        Qwen2.5-Omni reimplements this function to handle `use_audio_in_video`.
        """
        mm_item_counts = mm_items.get_all_counts()
        self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
        self._validate_mm_updates(mm_prompt_updates, mm_item_counts)

        # Detect use_audio_in_video from mm_kwargs
        use_audio_in_video = False
        if "video" in mm_kwargs:
            for item in mm_kwargs["video"]:
                if item and item.get("use_audio_in_video"):
                    use_audio_in_video_tensor = item["use_audio_in_video"].data
                    if use_audio_in_video_tensor.numel() > 0:
                        use_audio_in_video = bool(use_audio_in_video_tensor.item())
                        break

        if is_update_applied:
            mm_placeholders = self._find_mm_placeholders(
                prompt_ids,
                mm_prompt_updates,
            )
            self._validate_mm_placeholders(
                mm_placeholders,
                mm_item_counts,
            )
        else:
            if use_audio_in_video and "audio" in mm_prompt_updates:
                # Filter out audio updates - they are embedded in video
                filtered_updates = {
                    k: v for k, v in mm_prompt_updates.items() if k != "audio"
                }
                prompt_ids, mm_placeholders = self._apply_prompt_updates(
                    prompt_ids,
                    filtered_updates,
                )
                # Derive audio placeholders from video placeholders
                mm_placeholders = self._derive_audio_from_video_placeholders(
                    mm_placeholders, mm_prompt_updates
                )
            else:
                prompt_ids, mm_placeholders = self._apply_prompt_updates(
                    prompt_ids,
                    mm_prompt_updates,
                )

            self._validate_mm_placeholders(
                mm_placeholders,
                mm_item_counts,
            )

        return prompt_ids, mm_placeholders

    @classmethod
    def omni_get_updates_use_audio_in_video(
        cls,
        thinker_config: PretrainedConfig,
        audio_len: int,
        video_grid_thw: list[int] | torch.Tensor,
        video_second_per_grid_t: float,
    ) -> list[int]:
        """Get video prompt updates when `use_audio_in_video` is True.

        In this case, audio and vision update ids will be split into
        chunks and interleaved (details in `_omni_get_input_positions_tensor`).

        <|video_bos|><|VIDEO|><|video_eos|> =>
        <|video_bos|><|audio_bos|>(... chunks ...)<|audio_eos|><|video_eos|>
        """

        audio_token_id = thinker_config.audio_token_index
        video_token_id = thinker_config.video_token_index
        audio_start_token_id = thinker_config.audio_start_token_id
        audio_end_token_id = thinker_config.audio_end_token_id
        seconds_per_chunk = thinker_config.seconds_per_chunk
        spatial_merge_size = thinker_config.vision_config.spatial_merge_size
        tokens_per_second = getattr(
            thinker_config.vision_config, "tokens_per_second", 25
        )

        grid_t = video_grid_thw[0]
        grid_h = video_grid_thw[1]
        grid_w = video_grid_thw[2]
        t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
        t_index = (
            torch.arange(grid_t) * video_second_per_grid_t * tokens_per_second
        ).long()
        t_index_split_chunk = split_list_into_ranges(t_index, t_ntoken_per_chunk)

        updates = [audio_start_token_id]
        added_audio_len = 0
        for t_chunk in t_index_split_chunk:
            vision_ntoken_per_chunk = (
                len(t_chunk) * grid_h * grid_w // (spatial_merge_size**2)
            )
            updates.extend([video_token_id] * vision_ntoken_per_chunk)

            audio_chunk_size = min(t_ntoken_per_chunk, audio_len - added_audio_len)
            updates.extend(audio_chunk_size * [audio_token_id])
            added_audio_len += audio_chunk_size
        if added_audio_len < audio_len:
            updates.extend((audio_len - added_audio_len) * [audio_token_id])
        updates.extend([audio_end_token_id])

        return updates

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, Any],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
        tokenizer = self.info.get_tokenizer()
        image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
        vocab = tokenizer.get_vocab()

        audio_token = processor.audio_token
        image_token = processor.image_token
        video_token = processor.video_token
        audio_token_id = vocab[audio_token]
        image_token_id = vocab[image_token]
        video_token_id = vocab[video_token]

        out_mm_data = out_mm_kwargs.get_data()
        audio_feature_lengths = out_mm_data.get("audio_feature_lengths")
        feature_attention_mask = out_mm_data.get("feature_attention_mask")
        if audio_feature_lengths is None and feature_attention_mask is None:
            audio_output_lengths = []
        elif audio_feature_lengths is not None:
            _, audio_output_lens = _get_feat_extract_output_lengths(
                audio_feature_lengths
            )
            audio_output_lengths = audio_output_lens.tolist()
        elif feature_attention_mask is not None:
            assert isinstance(feature_attention_mask, torch.Tensor)
            _, audio_output_lens = _get_feat_extract_output_lengths(
                feature_attention_mask.sum(-1)
            )
            audio_output_lengths = audio_output_lens.tolist()

        # number of audios read from video.
        audio_in_video_item_idx = 0

        def get_replacement_qwen2_audio(item_idx: int):
            item_idx += audio_in_video_item_idx

            num_features = audio_output_lengths[item_idx]
            if num_features == 0:
                audios = mm_items.get_items("audio", AudioProcessorItems)
                audio = audios.get(item_idx)
                raise ValueError(
                    f"The audio {audio} (len={len(audio)}) is too short "
                    "to be represented inside the model"
                )

            return [audio_token_id] * num_features

        def get_replacement_qwen2_vision(item_idx: int, modality: str):
            grid_thw = out_mm_data[f"{modality}_grid_thw"][item_idx]
            assert isinstance(grid_thw, torch.Tensor)
            merge_length = image_processor.merge_size**2

            token_id = image_token_id if modality == "image" else video_token_id
            return [token_id] * (int(grid_thw.prod()) // merge_length)

        use_audio_in_video = hf_processor_mm_kwargs.get("use_audio_in_video", False)
        thinker_config = self.info.get_hf_config()

        def get_replacement_qwen2_use_audio_in_video(item_idx: int):
            nonlocal audio_in_video_item_idx

            audio_num_features = audio_output_lengths[
                audio_in_video_item_idx + item_idx
            ]
            video_grid_thw = out_mm_data["video_grid_thw"][item_idx]

            audio_in_video_item_idx += 1

            second_per_grid_ts = hf_processor_mm_kwargs.get("second_per_grid_ts", None)
            if second_per_grid_ts:
                video_second_per_grid_t = second_per_grid_ts[item_idx]
            else:
                video_second_per_grid_t = 1.0

            updates = self.omni_get_updates_use_audio_in_video(
                thinker_config=thinker_config,
                audio_len=audio_num_features,
                video_grid_thw=video_grid_thw,
                video_second_per_grid_t=video_second_per_grid_t,
            )

            # Only video tokens should receive video embeddings
            return PromptUpdateDetails.select_token_id(
                seq=updates,
                embed_token_id=video_token_id,
            )

        video_replacement_fn = (
            get_replacement_qwen2_use_audio_in_video
            if use_audio_in_video
            else partial(get_replacement_qwen2_vision, modality="video")
        )

        return [
            PromptReplacement(
                modality="audio",
                target=audio_token,
                replacement=get_replacement_qwen2_audio,
            ),
            PromptReplacement(
                modality="image",
                target=image_token,
                replacement=partial(get_replacement_qwen2_vision, modality="image"),
            ),
            PromptReplacement(
                modality="video",
                target=video_token,
                replacement=video_replacement_fn,
            ),
        ]

    def _apply_hf_processor_main(
        self,
        prompt: str | list[int],
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        tokenization_kwargs: Mapping[str, object],
        *,
        enable_hf_prompt_update: bool,
    ) -> tuple[list[int], BatchFeature, bool]:
        """
        Qwen2.5-Omni reimplements this function to handle text only.
        """
        if isinstance(prompt, str):
            if enable_hf_prompt_update:
                return self._apply_hf_processor_text_mm(
                    prompt_text=prompt,
                    mm_items=mm_items,
                    hf_processor_mm_kwargs=hf_processor_mm_kwargs,
                    tokenization_kwargs=tokenization_kwargs,
                )
            tokenizer = self.info.get_tokenizer()
            prompt_ids = tokenizer.encode(prompt)
        else:
            prompt_ids = self._apply_hf_processor_tokens_only(prompt)

        mm_processed_data = self._apply_hf_processor_mm_only(
            mm_items=mm_items,
            hf_processor_mm_kwargs=hf_processor_mm_kwargs,
            tokenization_kwargs=tokenization_kwargs,
        )

        return prompt_ids, mm_processed_data, False

    def _apply_hf_processor_mm_only(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        tokenization_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        """
        Qwen2.5-Omni reimplements this function to handle `use_audio_in_video`.
        """
        mm_counts = mm_items.get_all_counts()

        use_audio_in_video = hf_processor_mm_kwargs.get("use_audio_in_video", False)
        if use_audio_in_video and "video" in mm_counts:
            assert "audio" in mm_counts
            mm_counts["audio"] -= mm_counts["video"]

        _, mm_processed_data, _ = self._apply_hf_processor_text_mm(
            prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
            mm_items=mm_items,
            hf_processor_mm_kwargs=hf_processor_mm_kwargs,
            tokenization_kwargs=tokenization_kwargs,
        )

        return mm_processed_data

_apply_hf_processor_main

_apply_hf_processor_main(
    prompt: str | list[int],
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object],
    *,
    enable_hf_prompt_update: bool,
) -> tuple[list[int], BatchFeature, bool]

Qwen2.5-Omni reimplements this function to handle text only.

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def _apply_hf_processor_main(
    self,
    prompt: str | list[int],
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object],
    *,
    enable_hf_prompt_update: bool,
) -> tuple[list[int], BatchFeature, bool]:
    """
    Qwen2.5-Omni reimplements this function to handle text only.
    """
    if isinstance(prompt, str):
        if enable_hf_prompt_update:
            return self._apply_hf_processor_text_mm(
                prompt_text=prompt,
                mm_items=mm_items,
                hf_processor_mm_kwargs=hf_processor_mm_kwargs,
                tokenization_kwargs=tokenization_kwargs,
            )
        tokenizer = self.info.get_tokenizer()
        prompt_ids = tokenizer.encode(prompt)
    else:
        prompt_ids = self._apply_hf_processor_tokens_only(prompt)

    mm_processed_data = self._apply_hf_processor_mm_only(
        mm_items=mm_items,
        hf_processor_mm_kwargs=hf_processor_mm_kwargs,
        tokenization_kwargs=tokenization_kwargs,
    )

    return prompt_ids, mm_processed_data, False

_apply_hf_processor_mm_only

_apply_hf_processor_mm_only(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object],
) -> BatchFeature

Qwen2.5-Omni reimplements this function to handle use_audio_in_video.

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def _apply_hf_processor_mm_only(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object],
) -> BatchFeature:
    """
    Qwen2.5-Omni reimplements this function to handle `use_audio_in_video`.
    """
    mm_counts = mm_items.get_all_counts()

    use_audio_in_video = hf_processor_mm_kwargs.get("use_audio_in_video", False)
    if use_audio_in_video and "video" in mm_counts:
        assert "audio" in mm_counts
        mm_counts["audio"] -= mm_counts["video"]

    _, mm_processed_data, _ = self._apply_hf_processor_text_mm(
        prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
        mm_items=mm_items,
        hf_processor_mm_kwargs=hf_processor_mm_kwargs,
        tokenization_kwargs=tokenization_kwargs,
    )

    return mm_processed_data

_derive_audio_from_video_placeholders

_derive_audio_from_video_placeholders(
    placeholders: Mapping[
        str, list[PlaceholderFeaturesInfo]
    ],
    mm_prompt_updates: MultiModalPromptUpdates,
) -> Mapping[str, list[PlaceholderFeaturesInfo]]

Helper to derive audio placeholders from video placeholders when use_audio_in_video=True.

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def _derive_audio_from_video_placeholders(
    self,
    placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
    mm_prompt_updates: MultiModalPromptUpdates,
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
    """
    Helper to derive audio placeholders from video placeholders when
    use_audio_in_video=True.
    """
    if "video" not in placeholders:
        return placeholders

    # Validate audio and video counts match
    num_videos = len(placeholders["video"])
    num_audios = len(mm_prompt_updates.get("audio", []))
    if num_audios != num_videos:
        raise ValueError(
            f"use_audio_in_video requires equal number of audio and video "
            f"items, got {num_audios=}, {num_videos=}"
        )

    tokenizer = self.info.get_tokenizer()
    processor = self.info.get_hf_processor()
    audio_token_id = tokenizer.get_vocab()[processor.audio_token]
    video_token_id = tokenizer.get_vocab()[processor.video_token]

    result_placeholders = dict(placeholders)
    audio_placeholders = []
    video_placeholders = []

    # Each video is paired with one audio
    for video_idx, video_placeholder in enumerate(placeholders["video"]):
        # Create is_embed mask selecting only audio tokens
        audio_is_embed = torch.tensor(video_placeholder.tokens) == audio_token_id

        # Create is_embed mask selecting only video tokens
        video_is_embed = torch.tensor(video_placeholder.tokens) == video_token_id

        audio_placeholder = PlaceholderFeaturesInfo(
            modality="audio",
            item_idx=video_idx,
            start_idx=video_placeholder.start_idx,
            tokens=video_placeholder.tokens,
            is_embed=audio_is_embed,
        )
        audio_placeholders.append(audio_placeholder)

        # Update video placeholder with is_embed mask
        video_placeholder_with_mask = PlaceholderFeaturesInfo(
            modality="video",
            item_idx=video_idx,
            start_idx=video_placeholder.start_idx,
            tokens=video_placeholder.tokens,
            is_embed=video_is_embed,
        )
        video_placeholders.append(video_placeholder_with_mask)

    result_placeholders["audio"] = audio_placeholders
    result_placeholders["video"] = video_placeholders
    return result_placeholders

_maybe_apply_prompt_updates

_maybe_apply_prompt_updates(
    mm_items: MultiModalDataItems,
    prompt_ids: list[int],
    mm_kwargs: MultiModalKwargsItems,
    mm_prompt_updates: MultiModalPromptUpdates,
    is_update_applied: bool,
) -> tuple[
    list[int], Mapping[str, list[PlaceholderFeaturesInfo]]
]

Qwen2.5-Omni reimplements this function to handle use_audio_in_video.

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def _maybe_apply_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    prompt_ids: list[int],
    mm_kwargs: MultiModalKwargsItems,
    mm_prompt_updates: MultiModalPromptUpdates,
    is_update_applied: bool,
) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
    """
    Qwen2.5-Omni reimplements this function to handle `use_audio_in_video`.
    """
    mm_item_counts = mm_items.get_all_counts()
    self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
    self._validate_mm_updates(mm_prompt_updates, mm_item_counts)

    # Detect use_audio_in_video from mm_kwargs
    use_audio_in_video = False
    if "video" in mm_kwargs:
        for item in mm_kwargs["video"]:
            if item and item.get("use_audio_in_video"):
                use_audio_in_video_tensor = item["use_audio_in_video"].data
                if use_audio_in_video_tensor.numel() > 0:
                    use_audio_in_video = bool(use_audio_in_video_tensor.item())
                    break

    if is_update_applied:
        mm_placeholders = self._find_mm_placeholders(
            prompt_ids,
            mm_prompt_updates,
        )
        self._validate_mm_placeholders(
            mm_placeholders,
            mm_item_counts,
        )
    else:
        if use_audio_in_video and "audio" in mm_prompt_updates:
            # Filter out audio updates - they are embedded in video
            filtered_updates = {
                k: v for k, v in mm_prompt_updates.items() if k != "audio"
            }
            prompt_ids, mm_placeholders = self._apply_prompt_updates(
                prompt_ids,
                filtered_updates,
            )
            # Derive audio placeholders from video placeholders
            mm_placeholders = self._derive_audio_from_video_placeholders(
                mm_placeholders, mm_prompt_updates
            )
        else:
            prompt_ids, mm_placeholders = self._apply_prompt_updates(
                prompt_ids,
                mm_prompt_updates,
            )

        self._validate_mm_placeholders(
            mm_placeholders,
            mm_item_counts,
        )

    return prompt_ids, mm_placeholders

omni_get_updates_use_audio_in_video classmethod

omni_get_updates_use_audio_in_video(
    thinker_config: PretrainedConfig,
    audio_len: int,
    video_grid_thw: list[int] | Tensor,
    video_second_per_grid_t: float,
) -> list[int]

Get video prompt updates when use_audio_in_video is True.

In this case, audio and vision update ids will be split into chunks and interleaved (details in _omni_get_input_positions_tensor).

<|video_bos|><|VIDEO|><|video_eos|> => <|video_bos|><|audio_bos|>(... chunks ...)<|audio_eos|><|video_eos|>

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
@classmethod
def omni_get_updates_use_audio_in_video(
    cls,
    thinker_config: PretrainedConfig,
    audio_len: int,
    video_grid_thw: list[int] | torch.Tensor,
    video_second_per_grid_t: float,
) -> list[int]:
    """Get video prompt updates when `use_audio_in_video` is True.

    In this case, audio and vision update ids will be split into
    chunks and interleaved (details in `_omni_get_input_positions_tensor`).

    <|video_bos|><|VIDEO|><|video_eos|> =>
    <|video_bos|><|audio_bos|>(... chunks ...)<|audio_eos|><|video_eos|>
    """

    audio_token_id = thinker_config.audio_token_index
    video_token_id = thinker_config.video_token_index
    audio_start_token_id = thinker_config.audio_start_token_id
    audio_end_token_id = thinker_config.audio_end_token_id
    seconds_per_chunk = thinker_config.seconds_per_chunk
    spatial_merge_size = thinker_config.vision_config.spatial_merge_size
    tokens_per_second = getattr(
        thinker_config.vision_config, "tokens_per_second", 25
    )

    grid_t = video_grid_thw[0]
    grid_h = video_grid_thw[1]
    grid_w = video_grid_thw[2]
    t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
    t_index = (
        torch.arange(grid_t) * video_second_per_grid_t * tokens_per_second
    ).long()
    t_index_split_chunk = split_list_into_ranges(t_index, t_ntoken_per_chunk)

    updates = [audio_start_token_id]
    added_audio_len = 0
    for t_chunk in t_index_split_chunk:
        vision_ntoken_per_chunk = (
            len(t_chunk) * grid_h * grid_w // (spatial_merge_size**2)
        )
        updates.extend([video_token_id] * vision_ntoken_per_chunk)

        audio_chunk_size = min(t_ntoken_per_chunk, audio_len - added_audio_len)
        updates.extend(audio_chunk_size * [audio_token_id])
        added_audio_len += audio_chunk_size
    if added_audio_len < audio_len:
        updates.extend((audio_len - added_audio_len) * [audio_token_id])
    updates.extend([audio_end_token_id])

    return updates

Qwen2_5OmniThinkerProcessingInfo

Bases: Qwen2AudioProcessingInfo, Qwen2_5_VLProcessingInfo

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
class Qwen2_5OmniThinkerProcessingInfo(
    Qwen2AudioProcessingInfo, Qwen2_5_VLProcessingInfo
):
    def get_hf_config(self):
        return self.ctx.get_hf_config(Qwen2_5OmniConfig).thinker_config

    def get_hf_processor(self, **kwargs: object) -> Qwen2_5OmniProcessor:
        return self.ctx.get_hf_processor(
            Qwen2_5OmniProcessor,
            use_fast=kwargs.pop("use_fast", True),
            **kwargs,
        )

    def get_feature_extractor(self, **kwargs: object):
        hf_processor = self.get_hf_processor(**kwargs)
        feature_extractor = hf_processor.feature_extractor  # type: ignore
        assert isinstance(feature_extractor, WhisperFeatureExtractor)
        return feature_extractor

    def get_data_parser(self):
        feature_extractor = self.get_feature_extractor()

        return Qwen2_5OmniThinkerMultiModalDataParser(
            spatial_merge_size=self.get_hf_config().vision_config.spatial_merge_size,
            target_sr=feature_extractor.sampling_rate,
            target_channels=self.get_target_channels(),
            expected_hidden_size=self._get_expected_hidden_size(),
        )

    def get_target_channels(self) -> int:
        """Return target audio channels for Qwen2.5 Omni models (mono)."""
        return 1

    def get_supported_mm_limits(self) -> Mapping[str, int | None]:
        return {"audio": None, "image": None, "video": None}

get_target_channels

get_target_channels() -> int

Return target audio channels for Qwen2.5 Omni models (mono).

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def get_target_channels(self) -> int:
    """Return target audio channels for Qwen2.5 Omni models (mono)."""
    return 1

check_interleaved_audio_video

check_interleaved_audio_video(
    is_video: Tensor,
    is_audio: Tensor,
    num_video: int,
    num_audio: int,
) -> bool

Check if video and audio positions are interleaved in the multimodal region.

Returns:

Type Description
bool

True if video and audio tokens are interleaved, False otherwise.

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def check_interleaved_audio_video(
    is_video: torch.Tensor,
    is_audio: torch.Tensor,
    num_video: int,
    num_audio: int,
) -> bool:
    """
    Check if video and audio positions are interleaved in the multimodal region.

    Returns:
        True if video and audio tokens are interleaved, False otherwise.
    """
    if num_video == 0 or num_audio == 0:
        return False

    video_pos = is_video.nonzero(as_tuple=True)[0]
    audio_pos = is_audio.nonzero(as_tuple=True)[0]

    return (
        video_pos[0].item() < audio_pos[-1].item()
        and audio_pos[0].item() < video_pos[-1].item()
    )

merge_interleaved_embeddings

merge_interleaved_embeddings(
    inputs_embeds: Tensor,
    multimodal_embeddings: MultiModalEmbeddings,
    is_video: Tensor,
    is_audio: Tensor,
    is_multimodal: Tensor,
    num_video: int,
    num_audio: int,
) -> Tensor

Merge embeddings for interleaved audio-in-video sequences.

When use_audio_in_video=True, video and audio tokens are interleaved in the token sequence, but embeddings are provided as separate contiguous tensors (video first, then audio). This function reorders video and audio embeddings to match sequence position order and scatters them efficiently.

Parameters:

Name Type Description Default
inputs_embeds Tensor

The input embeddings tensor to merge into.

required
multimodal_embeddings MultiModalEmbeddings

List of embedding tensors (video, audio, other).

required
is_video Tensor

Boolean mask for video token positions.

required
is_audio Tensor

Boolean mask for audio token positions.

required
is_multimodal Tensor

Boolean mask for all multimodal token positions.

required
num_video int

Total count of video tokens.

required
num_audio int

Total count of audio tokens.

required

Returns:

Type Description
Tensor

The merged inputs_embeds tensor with multimodal embeddings scattered

Tensor

to their correct positions.

Source code in vllm/model_executor/models/qwen2_5_omni_thinker.py
def merge_interleaved_embeddings(
    inputs_embeds: torch.Tensor,
    multimodal_embeddings: "MultiModalEmbeddings",
    is_video: torch.Tensor,
    is_audio: torch.Tensor,
    is_multimodal: torch.Tensor,
    num_video: int,
    num_audio: int,
) -> torch.Tensor:
    """
    Merge embeddings for interleaved audio-in-video sequences.

    When use_audio_in_video=True, video and audio tokens are interleaved in
    the token sequence, but embeddings are provided as separate contiguous
    tensors (video first, then audio). This function reorders video and audio
    embeddings to match sequence position order and scatters them efficiently.

    Args:
        inputs_embeds: The input embeddings tensor to merge into.
        multimodal_embeddings: List of embedding tensors (video, audio, other).
        is_video: Boolean mask for video token positions.
        is_audio: Boolean mask for audio token positions.
        is_multimodal: Boolean mask for all multimodal token positions.
        num_video: Total count of video tokens.
        num_audio: Total count of audio tokens.

    Returns:
        The merged inputs_embeds tensor with multimodal embeddings scattered
        to their correct positions.
    """
    # Categorize embeddings by modality based on token counts.
    # Embeddings come grouped by modality but order varies (e.g., image, video, audio
    # or video, audio depending on input kwargs order).
    video_embeds: list[torch.Tensor] = []
    audio_embeds: list[torch.Tensor] = []
    other_embeds: list[torch.Tensor] = []
    video_remaining = num_video
    audio_remaining = num_audio

    for emb in multimodal_embeddings:
        n = emb.shape[0]
        if video_remaining > 0 and n <= video_remaining:
            video_embeds.append(emb)
            video_remaining -= n
        elif audio_remaining > 0 and n <= audio_remaining:
            audio_embeds.append(emb)
            audio_remaining -= n
        else:
            other_embeds.append(emb)

    # Scatter each modality to its positions
    if video_embeds:
        video_positions = is_video.nonzero(as_tuple=True)[0]
        inputs_embeds[video_positions] = torch.cat(video_embeds, dim=0)
    if audio_embeds:
        audio_positions = is_audio.nonzero(as_tuple=True)[0]
        inputs_embeds[audio_positions] = torch.cat(audio_embeds, dim=0)
    if other_embeds:
        other_mask = is_multimodal & ~is_video & ~is_audio
        other_positions = other_mask.nonzero(as_tuple=True)[0]
        inputs_embeds[other_positions] = torch.cat(other_embeds, dim=0)

    return inputs_embeds