Shape invariants for Qwen2Model Model, those are translated to runtime assertions for unbacked dynamic shapes and are compiled away for backed
Source code in vllm/model_executor/models/qwen2.py
| def qwen_2_model_invariants(
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
):
"""Shape invariants for Qwen2Model Model, those are translated to
runtime assertions for unbacked dynamic shapes and are compiled away for
backed"""
# All these should be equal.
# input_ids.size()[0]
# positions.size()[-1]
# intermediate_tensors["hidden_states"].size()[0]
# inputs_embeds.size()[0]
torch._check(input_ids.size()[0] == positions.size()[-1])
if intermediate_tensors is not None:
torch._check(
input_ids.size()[0] == intermediate_tensors["hidden_states"].size()[0]
)
if inputs_embeds is not None:
torch._check(input_ids.size()[0] == inputs_embeds.size()[0])
# Hidden dimensions should match (hidden_size)
# intermediate_tensors["hidden_states"].size()[1]
# inputs_embeds.size()[1]
if inputs_embeds is not None and intermediate_tensors is not None:
torch._check(
inputs_embeds.size()[1] == intermediate_tensors["hidden_states"].size()[1]
)
|