Skip to content

vllm.model_executor.models.nemotron_vl

LlamaNemotronVLChatModel

Bases: Module, SupportsMultiModal, SupportsPP, SupportsLoRA

Source code in vllm/model_executor/models/nemotron_vl.py
@MULTIMODAL_REGISTRY.register_processor(
    BaseInternVLMultiModalProcessor[NemotronVLProcessingInfo],
    info=NemotronVLProcessingInfo,
    dummy_inputs=BaseInternVLDummyInputsBuilder[NemotronVLProcessingInfo],
)
class LlamaNemotronVLChatModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> str | None:
        if modality.startswith("image"):
            return "<image>"

        raise ValueError("Only image modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
        super().__init__()

        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config

        self.config = config
        self.multimodal_config = multimodal_config
        self._patch_quant_config(config, quant_config)

        image_size = config.force_image_size or config.vision_config.image_size
        patch_size = config.vision_config.patch_size
        self.patch_size = patch_size
        self.num_image_token = int(
            (image_size // patch_size) ** 2 * (config.downsample_ratio**2)
        )
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version

        with self._mark_tower_model(vllm_config, "image"):
            self.vision_model = self._init_vision_model(
                config,
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "vision_model"),
            )
            self.mlp1 = self._init_mlp1(config)

        with self._mark_language_model(vllm_config):
            self.language_model = init_vllm_registered_model(
                vllm_config=vllm_config,
                hf_config=config.text_config,
                prefix=maybe_prefix(prefix, "language_model"),
            )

        self.img_context_token_id = None

        self.visual_token_mask = None
        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors
        )

    def _patch_quant_config(
        self, config: PretrainedConfig, quant_config: QuantizationConfig
    ):
        # the awq models from OpenGVLab missing `modules_to_not_convert`
        # patch the quant_config to add `modules_to_not_convert` back
        if isinstance(quant_config, AWQConfig):
            text_config = config.text_config
            llm_quant_config = getattr(text_config, "quantization_config", None)
            if (not quant_config.modules_to_not_convert) and (
                llm_quant_config is not None
            ):
                quant_config.modules_to_not_convert.append("vision_model")

    def _init_vision_model(
        self,
        config: PretrainedConfig,
        quant_config: QuantizationConfig | None,
        *,
        prefix: str,
    ):
        return AutoModel.from_config(config.vision_config, trust_remote_code=True)

    def _init_mlp1(self, config: PretrainedConfig) -> nn.Module:
        vit_hidden_size = config.vit_hidden_size
        vision_projection_hidden_size = config.projector_hidden_size
        llm_hidden_size = config.text_config.hidden_size

        return nn.Sequential(
            nn.LayerNorm(
                vit_hidden_size * int(1 / self.downsample_ratio) ** 2, bias=True
            ),
            nn.Linear(
                vit_hidden_size * int(1 / self.downsample_ratio) ** 2,
                vision_projection_hidden_size,
                bias=True,
            ),
            nn.GELU(),
            nn.Linear(vision_projection_hidden_size, llm_hidden_size),
        )

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        x = x.view(
            n,
            int(h * scale_factor),
            int(w * scale_factor),
            int(c / (scale_factor * scale_factor)),
        )
        if self.ps_version == "v1":
            pass
        else:
            x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor:
        # https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1/blob/main/modeling.py#L177
        vit_embeds = self.vision_model(x=pixel_values).features
        vit_embeds = vit_embeds.to(dtype=torch.bfloat16)

        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        vit_embeds = self.mlp1(vit_embeds)
        return vit_embeds

    def _parse_and_validate_image_input(
        self, **kwargs: object
    ) -> InternVLImageInputs | None:
        pixel_values_flat = kwargs.pop("pixel_values_flat", None)
        image_num_patches = kwargs.pop("image_num_patches", None)
        image_embeds = kwargs.pop("image_embeds", None)

        if pixel_values_flat is None and image_embeds is None:
            return None

        if image_embeds is not None:
            return InternVLImageEmbeddingInputs(
                type="image_embeds",
                data=image_embeds,
            )

        image_token_id = kwargs["image_token_id"]
        if isinstance(image_token_id, torch.Tensor):
            image_token_id = image_token_id.flatten().unique().item()

        assert isinstance(image_token_id, int)
        self.img_context_token_id = image_token_id

        if pixel_values_flat is not None:
            return InternVLImagePixelInputs(
                type="pixel_values",
                pixel_values_flat=pixel_values_flat,
                num_patches=image_num_patches,
                resolve_bindings={
                    "h": self.config.force_image_size,
                    "w": self.config.force_image_size,
                },
            )

        raise AssertionError("This line should be unreachable.")

    def _process_image_input(
        self,
        image_input: InternVLImageInputs,
    ) -> tuple[torch.Tensor, ...]:
        if image_input["type"] == "image_embeds":
            return image_input["data"]

        image_embeds = self.extract_feature(image_input["pixel_values_flat"])

        num_patches = image_input["num_patches"]

        # Only one image in the current batch
        if len(num_patches) == 1:
            return (image_embeds.view(-1, self.config.text_config.hidden_size),)

        # NOTE: Image embeddings are split into separate tensors for each image
        # by the size of each embedding.
        feature_size = image_embeds.shape[1]
        image_embeds = image_embeds.view(-1, self.config.text_config.hidden_size)
        image_feature_sizes = [
            num_patches * feature_size for num_patches in num_patches
        ]
        return image_embeds.split(image_feature_sizes)

    def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
        modalities = {}

        # Preserve the order of modalities if there are multiple of them
        # from the order of kwargs.
        for input_key in kwargs:
            if (
                input_key in ("pixel_values_flat", "image_embeds")
                and "images" not in modalities
            ):
                modalities["images"] = self._parse_and_validate_image_input(**kwargs)

        return modalities

    def _set_visual_token_mask(self, input_ids: torch.Tensor) -> None:
        self.visual_token_mask = None

    def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
        modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
        if not modalities:
            return []

        # The result multimodal_embeddings is tuple of tensors, with each
        # tensor corresponding to a multimodal data item (image).
        multimodal_embeddings: tuple[torch.Tensor, ...] = ()

        # NOTE: It is important to iterate over the keys in this dictionary
        # to preserve the order of the modalities.
        for modality in modalities:
            if modality == "images":
                image_input = modalities["images"]
                image_embeddings = self._process_image_input(image_input)
                multimodal_embeddings += tuple(image_embeddings)

        return multimodal_embeddings

    def embed_input_ids(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: MultiModalEmbeddings | None = None,
        *,
        is_multimodal: torch.Tensor | None = None,
        handle_oov_mm_token: bool = False,
    ) -> torch.Tensor:
        if multimodal_embeddings is not None and len(multimodal_embeddings) > 0:
            self._set_visual_token_mask(input_ids)

        # This is to satisfy the type checker for each overload
        if multimodal_embeddings is None or is_multimodal is None:
            return super().embed_input_ids(input_ids)

        return super().embed_input_ids(
            input_ids,
            multimodal_embeddings=multimodal_embeddings,
            is_multimodal=is_multimodal,
            handle_oov_mm_token=handle_oov_mm_token,
        )

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs: object,
    ) -> IntermediateTensors:
        if intermediate_tensors is not None:
            inputs_embeds = None

        forward_kwargs = {
            "input_ids": input_ids,
            "positions": positions,
            "intermediate_tensors": intermediate_tensors,
            "inputs_embeds": inputs_embeds,
        }

        # Only required if the model is mono-architecture
        if self.visual_token_mask is not None:
            forward_kwargs.update({"visual_token_mask": self.visual_token_mask})
            self.visual_token_mask = None

        hidden_states = self.language_model.model(**forward_kwargs)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor | None:
        return self.language_model.compute_logits(hidden_states)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        ## Ignore registered_buffers
        ## see https://huggingface.co/nvidia/C-RADIOv2-H/blob/main/input_conditioner.py#L28 # noqa: E501
        skip_substrs = ["norm_mean", "norm_std"]
        loader = AutoWeightsLoader(self, skip_substrs=skip_substrs)
        return loader.load_weights(weights)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(
            language_model="language_model",
            connector="mlp1",
            tower_model="vision_model",
        )

get_mm_mapping

get_mm_mapping() -> MultiModelKeys

Get the module prefix in multimodal models

Source code in vllm/model_executor/models/nemotron_vl.py
def get_mm_mapping(self) -> MultiModelKeys:
    """
    Get the module prefix in multimodal models
    """
    return MultiModelKeys.from_string_field(
        language_model="language_model",
        connector="mlp1",
        tower_model="vision_model",
    )

NemotronVLProcessingInfo

Bases: BaseInternVLProcessingInfo

Processing info for Nemotron VL models.

Source code in vllm/model_executor/models/nemotron_vl.py
class NemotronVLProcessingInfo(BaseInternVLProcessingInfo):
    """Processing info for Nemotron VL models."""

    def get_hf_processor(self, **kwargs: object) -> NemotronVLProcessor:
        return self.ctx.init_processor(
            NemotronVLProcessor,
            config=self.get_hf_config(),
            tokenizer=self.get_tokenizer(),
            image_processor=self.get_image_processor(),
            **kwargs,
        )

    def get_image_processor(self, **kwargs: object):
        return cached_image_processor_from_config(
            self.ctx.model_config,
            **kwargs,
        )