Skip to content

vllm.model_executor.models.interns1

InternS1DummyInputsBuilder

Bases: BaseDummyInputsBuilder[InternS1ProcessingInfo]

DummyInputsBuilder for InternS1-style models.

Source code in vllm/model_executor/models/interns1.py
class InternS1DummyInputsBuilder(BaseDummyInputsBuilder[InternS1ProcessingInfo]):
    """DummyInputsBuilder for InternS1-style models."""

    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_images = mm_counts.get("image", 0)
        num_videos = mm_counts.get("video", 0)
        image_token = self.info.get_hf_processor().image_token
        video_token = self.info.get_hf_processor().video_token

        return image_token * num_images + video_token * num_videos

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
        mm_options: Mapping[str, BaseDummyOptions] | None = None,
        mm_processor_kwargs: Mapping[str, object] | None = None,
    ) -> MultiModalDataDict:
        target_width, target_height = self.info.get_image_size_with_most_features()
        target_num_frames = self.info.get_num_frames_with_most_features(
            seq_len, mm_counts
        )
        num_images = mm_counts.get("image", 0)
        num_videos = mm_counts.get("video", 0)

        config = self.info.get_hf_config()
        image_size_h, image_size_w = config.vision_config.image_size

        image_overrides = mm_options.get("image") if mm_options else None
        video_overrides = mm_options.get("video") if mm_options else None

        return {
            "image": self._get_dummy_images(
                width=target_width,
                height=target_height,
                num_images=num_images,
                overrides=image_overrides,
            ),
            "video": self._get_dummy_videos(
                width=image_size_w,
                height=image_size_h,
                num_frames=target_num_frames,
                num_videos=num_videos,
                overrides=video_overrides,
            ),
        }

InternS1ForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsPP, SupportsLoRA

Source code in vllm/model_executor/models/interns1.py
@MULTIMODAL_REGISTRY.register_processor(
    InternS1MultiModalProcessor,
    info=InternS1ProcessingInfo,
    dummy_inputs=InternS1DummyInputsBuilder,
)
class InternS1ForConditionalGeneration(
    nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA
):
    # To ensure correct weight loading and mapping.
    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            "lm_head.": "language_model.lm_head.",
            "model.language_model.": "language_model.model.",
            "model.vision_tower.": "vision_tower.",
            "model.multi_modal_projector.": "multi_modal_projector.",
        }
    )

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> str | None:
        # transformers InternVLProcessor uses <IMG_CONTEXT> as the separator
        # refer to https://github.com/huggingface/transformers/blob/f90de364c2484c7c325bbe05befdcf487bd75b63/src/transformers/models/internvl/processing_internvl.py#L116
        if modality.startswith("image"):
            return "<IMG_CONTEXT>"
        if modality.startswith("video"):
            return "<video>"

        raise ValueError("Only image or video modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config

        self.config = config
        self.multimodal_config = multimodal_config

        image_size = config.vision_config.image_size[0]
        patch_size = config.vision_config.patch_size[0]
        self.patch_size = patch_size
        self.num_image_token = int(
            (image_size // patch_size) ** 2 * (config.downsample_ratio**2)
        )
        self.downsample_ratio = config.downsample_ratio

        with self._mark_tower_model(vllm_config, {"image", "video"}):
            self.vision_tower = self._init_vision_model(
                config,
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "vision_tower"),
            )
            self.multi_modal_projector = self._init_mlp1(config)

        with self._mark_language_model(vllm_config):
            self.language_model = init_vllm_registered_model(
                vllm_config=vllm_config,
                hf_config=config.text_config,
                prefix=maybe_prefix(prefix, "language_model"),
            )

        self.img_context_token_id = None
        self.video_context_token_id = None

        self.visual_token_mask = None
        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors
        )

    def _init_vision_model(
        self,
        config: PretrainedConfig,
        quant_config: QuantizationConfig | None,
        *,
        prefix: str,
    ):
        num_hidden_layers = config.vision_config.num_hidden_layers
        return InternS1VisionModel(
            config.vision_config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers,
            prefix=prefix,
        )

    def _init_mlp1(self, config: PretrainedConfig) -> nn.Module:
        return InternS1MultiModalProjector(config)

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        x = x.view(
            n,
            int(h * scale_factor),
            int(w * scale_factor),
            int(c / (scale_factor * scale_factor)),
        )
        x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor:
        vit_embeds = self.vision_tower(pixel_values=pixel_values)
        vit_embeds = vit_embeds[:, 1:, :]

        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])

        vit_embeds = self.multi_modal_projector(vit_embeds)
        return vit_embeds

    def _parse_and_validate_image_input(
        self, **kwargs: object
    ) -> InternS1ImageInputs | None:
        pixel_values = kwargs.pop("pixel_values", None)
        image_num_patches = kwargs.pop("image_num_patches", None)
        image_embeds = kwargs.pop("image_embeds", None)

        if pixel_values is None and image_embeds is None:
            return None

        if image_embeds is not None:
            return InternS1ImageEmbeddingInputs(
                type="image_embeds",
                data=image_embeds,
            )

        image_token_id = kwargs["image_token_id"]
        if isinstance(image_token_id, torch.Tensor):
            image_token_id = image_token_id.flatten().unique().item()

        assert isinstance(image_token_id, int)
        self.img_context_token_id = image_token_id

        if pixel_values is not None:
            h, w = self.config.vision_config.image_size
            return InternS1ImagePixelInputs(
                type="pixel_values",
                pixel_values=pixel_values,
                num_patches=image_num_patches,
                resolve_bindings={
                    "h": h,
                    "w": w,
                },
            )

        raise AssertionError("This line should be unreachable.")

    def _parse_and_validate_video_input(
        self, **kwargs: object
    ) -> InternS1VideoInputs | None:
        pixel_values_flat_video = kwargs.pop("pixel_values_videos", None)
        video_num_patches = kwargs.pop("video_num_patches", None)
        video_embeds = kwargs.pop("video_embeds", None)

        if pixel_values_flat_video is None and video_embeds is None:
            return None

        if video_embeds is not None:
            return InternS1VideoEmbeddingInputs(
                type="video_embeds",
                data=video_embeds,
            )

        video_token_id = kwargs["video_token_id"]
        if isinstance(video_token_id, torch.Tensor):
            video_token_id = video_token_id.flatten().unique().item()

        assert isinstance(video_token_id, int)
        self.video_context_token_id = video_token_id

        if pixel_values_flat_video is not None:
            h, w = self.config.vision_config.image_size
            return InternS1VideoPixelInputs(
                type="pixel_values_videos",
                num_patches=video_num_patches,
                pixel_values=pixel_values_flat_video,
                resolve_bindings={
                    "h": h,
                    "w": w,
                },
            )

        raise AssertionError("This line should be unreachable.")

    def _process_vision_input(
        self,
        image_input: InternS1ImageInputs | InternS1VideoInputs,
    ) -> tuple[torch.Tensor, ...]:
        if (
            image_input["type"] == "image_embeds"
            or image_input["type"] == "video_embeds"
        ):
            return image_input["data"]

        image_embeds = self.extract_feature(image_input["pixel_values"])

        num_patches = image_input["num_patches"]

        # Only one image in the current batch
        if len(num_patches) == 1:
            return (image_embeds.view(-1, self.config.text_config.hidden_size),)

        # NOTE: Image embeddings are split into separate tensors for each image
        # by the size of each embedding.
        feature_size = image_embeds.shape[1]
        image_embeds = image_embeds.view(-1, self.config.text_config.hidden_size)
        image_feature_sizes = [
            num_patches * feature_size for num_patches in num_patches
        ]
        return image_embeds.split(image_feature_sizes)

    def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
        modalities = {}

        # Preserve the order of modalities if there are multiple of them
        # from the order of kwargs.
        for input_key in kwargs:
            if (
                input_key in ("pixel_values", "image_embeds")
                and "images" not in modalities
            ):
                modalities["images"] = self._parse_and_validate_image_input(**kwargs)
            if input_key in ("pixel_values_videos",) and "videos" not in modalities:
                modalities["videos"] = self._parse_and_validate_video_input(**kwargs)

        return modalities

    def _set_visual_token_mask(self, input_ids: torch.Tensor) -> None:
        self.visual_token_mask = None

    def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
        modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
        if not modalities:
            return []

        # The result multimodal_embeddings is tuple of tensors, with each
        # tensor corresponding to a multimodal data item (image or video).
        multimodal_embeddings: tuple[torch.Tensor, ...] = ()

        # NOTE: It is important to iterate over the keys in this dictionary
        # to preserve the order of the modalities.
        for modality in modalities:
            if modality == "images":
                image_input = modalities["images"]
                image_embeddings = self._process_vision_input(image_input)
                multimodal_embeddings += tuple(image_embeddings)
            if modality == "videos":
                video_input = modalities["videos"]
                video_embeddings = self._process_vision_input(video_input)
                multimodal_embeddings += tuple(video_embeddings)

        return multimodal_embeddings

    def embed_input_ids(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: MultiModalEmbeddings | None = None,
        *,
        is_multimodal: torch.Tensor | None = None,
        handle_oov_mm_token: bool = False,
    ) -> torch.Tensor:
        if multimodal_embeddings is not None and len(multimodal_embeddings) > 0:
            self._set_visual_token_mask(input_ids)

        # This is to satisfy the type checker for each overload
        if multimodal_embeddings is None or is_multimodal is None:
            return super().embed_input_ids(input_ids)

        return super().embed_input_ids(
            input_ids,
            multimodal_embeddings=multimodal_embeddings,
            is_multimodal=is_multimodal,
            handle_oov_mm_token=handle_oov_mm_token,
        )

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs: object,
    ) -> IntermediateTensors:
        if intermediate_tensors is not None:
            inputs_embeds = None

        forward_kwargs = {
            "input_ids": input_ids,
            "positions": positions,
            "intermediate_tensors": intermediate_tensors,
            "inputs_embeds": inputs_embeds,
        }

        hidden_states = self.language_model.model(**forward_kwargs)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor | None:
        return self.language_model.compute_logits(hidden_states)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(
            language_model="language_model",
            connector="multi_modal_projector",
            tower_model="vision_tower",
        )

get_mm_mapping

get_mm_mapping() -> MultiModelKeys

Get the module prefix in multimodal models

Source code in vllm/model_executor/models/interns1.py
def get_mm_mapping(self) -> MultiModelKeys:
    """
    Get the module prefix in multimodal models
    """
    return MultiModelKeys.from_string_field(
        language_model="language_model",
        connector="multi_modal_projector",
        tower_model="vision_tower",
    )

InternS1ImageEmbeddingInputs

Bases: TensorSchema

Dimensions
  • ni: Number of images
  • tifs: Total image feature size
  • hs: Hidden size (must match language model backbone)
Source code in vllm/model_executor/models/interns1.py
class InternS1ImageEmbeddingInputs(TensorSchema):
    """
    Dimensions:
        - ni: Number of images
        - tifs: Total image feature size
        - hs: Hidden size (must match language model backbone)
    """

    type: Literal["image_embeds"] = "image_embeds"
    data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("ni", "tifs", "hs")]

InternS1ImagePixelInputs

Bases: TensorSchema

Dimensions
  • bnp: Batch size * number of images * (1 + num_patches)
  • c: Number of channels (3)
  • h: Height
  • w: Width
  • bn: Batch size * number of images
Source code in vllm/model_executor/models/interns1.py
class InternS1ImagePixelInputs(TensorSchema):
    """
    Dimensions:
        - bnp: Batch size * number of images * (1 + num_patches)
        - c: Number of channels (3)
        - h: Height
        - w: Width
        - bn: Batch size * number of images
    """

    type: Literal["pixel_values"] = "pixel_values"
    pixel_values: Annotated[torch.Tensor, TensorShape("bnp", 3, "h", "w")]
    num_patches: Annotated[torch.Tensor, TensorShape("bn")]

InternS1MultiModalProcessor

Bases: BaseMultiModalProcessor[InternS1ProcessingInfo]

Basic image-only MultiModalProcessor for InternS1-style models.

Source code in vllm/model_executor/models/interns1.py
class InternS1MultiModalProcessor(BaseMultiModalProcessor[InternS1ProcessingInfo]):
    """Basic image-only MultiModalProcessor for InternS1-style models."""

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        mm_data = dict(mm_data)
        videos = mm_data.pop("videos", [])
        images = mm_data.pop("images", [])
        assert isinstance(videos, list)
        assert isinstance(images, list)

        hf_processor = self.info.get_hf_processor(**mm_kwargs)
        tokenizer = hf_processor.tokenizer
        video_token_id = tokenizer.encode(
            hf_processor.video_token, add_special_tokens=False
        )
        assert len(video_token_id) == 1
        video_token_id = video_token_id[0]

        prompt = re.sub(hf_processor.image_token, "<image_placeholder>", prompt)
        prompt = re.sub(hf_processor.video_token, "<video_placeholder>", prompt)

        image_outputs = {}
        if images:
            image_pixel_values = []
            for image in images:
                processed_outputs = super()._call_hf_processor(
                    prompt=hf_processor.image_token,
                    mm_data={"images": image},
                    mm_kwargs=mm_kwargs,
                    tok_kwargs=tok_kwargs,
                )
                image_pixel_values.append(processed_outputs.pop("pixel_values"))

                input_ids = processed_outputs.pop("input_ids")
                image_placeholder = tokenizer.batch_decode(input_ids)[0]
                prompt = prompt.replace("<image_placeholder>", image_placeholder, 1)

            num_patches = [len(item) for item in image_pixel_values]
            image_outputs = {
                "pixel_values": torch.concat(image_pixel_values),
                "image_num_patches": torch.tensor(num_patches),
                "image_token_id": torch.tensor(hf_processor.image_token_id),
            }

        video_outputs = {}
        if videos:
            video_pixel_values = []
            for video in videos:
                processed_outputs = super()._call_hf_processor(
                    prompt=hf_processor.video_token,
                    mm_data={"videos": video},
                    mm_kwargs=mm_kwargs,
                    tok_kwargs=tok_kwargs,
                )
                video_pixel_values.append(processed_outputs.pop("pixel_values"))

                input_ids = processed_outputs.pop("input_ids")
                input_ids[input_ids == hf_processor.image_token_id] = video_token_id

                video_placeholder = tokenizer.batch_decode(input_ids)[0]
                prompt = prompt.replace("<video_placeholder>", video_placeholder, 1)

            num_frames = [len(item) for item in video_pixel_values]
            video_outputs = {
                "pixel_values_videos": torch.concat(video_pixel_values),
                "video_num_patches": torch.tensor(num_frames),
                "video_token_id": torch.tensor(video_token_id),
            }

        prompt = re.sub("<image_placeholder>", hf_processor.image_token, prompt)
        prompt = re.sub("<video_placeholder>", hf_processor.video_token, prompt)
        text_outputs = tokenizer(prompt, **tok_kwargs, return_tensors="pt")

        return BatchFeature({**text_outputs, **image_outputs, **video_outputs})

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        image_num_patches = hf_inputs.get("image_num_patches", torch.empty(0))
        video_num_patches = hf_inputs.get("video_num_patches", torch.empty(0))
        num_images = len(image_num_patches)
        num_videos = len(video_num_patches)

        return dict(
            pixel_values=MultiModalFieldConfig.flat_from_sizes(
                "image", image_num_patches
            ),
            image_num_patches=MultiModalFieldConfig.batched("image"),
            image_embeds=MultiModalFieldConfig.batched("image"),
            image_token_id=MultiModalFieldConfig.shared("image", num_images),
            pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
                "video", video_num_patches
            ),
            video_num_patches=MultiModalFieldConfig.batched("video"),
            video_token_id=MultiModalFieldConfig.shared("video", num_videos),
        )

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
        img_context_token = hf_processor.image_token
        start_image_token = hf_processor.start_image_token
        end_image_token = hf_processor.end_image_token
        video_token = hf_processor.video_token

        out_mm_data = out_mm_kwargs.get_data()
        if "video_num_patches" in out_mm_data:
            video_num_patches = out_mm_data["video_num_patches"]
            assert isinstance(video_num_patches, torch.Tensor)
            video_num_patches = video_num_patches.tolist()
        else:
            video_num_patches = []

        if "image_num_patches" in out_mm_data:
            image_num_patches = out_mm_data["image_num_patches"]
            assert isinstance(image_num_patches, torch.Tensor)
            image_num_patches = image_num_patches.tolist()
        else:
            image_num_patches = []

        def get_replacement_interns1_image(item_idx: int):
            images = mm_items.get_items(
                "image", (ImageEmbeddingItems, ImageProcessorItems)
            )

            if isinstance(images, ImageEmbeddingItems):
                feature_size = images.get_feature_size(item_idx)
            else:
                num_patches = image_num_patches[item_idx]
                feature_size = num_patches * hf_processor.image_seq_length

            repl_features = img_context_token * feature_size
            repl_full = start_image_token + repl_features + end_image_token
            return PromptUpdateDetails.select_text(repl_full, img_context_token)

        def get_replacement_interns1_video(item_idx: int):
            num_patches = video_num_patches[item_idx]
            repl_features = video_token * hf_processor.image_seq_length
            repl_features_with_sep = start_image_token + repl_features + end_image_token
            # num_patches is equal to num_frames
            repl_full = "\n".join(
                [f"Frame{i + 1}: {repl_features_with_sep}" for i in range(num_patches)]
            )

            return PromptUpdateDetails.select_text(repl_full, video_token)

        return [
            PromptReplacement(
                modality="image",
                target=img_context_token,
                replacement=get_replacement_interns1_image,
            ),
            PromptReplacement(
                modality="video",
                target=video_token,
                replacement=get_replacement_interns1_video,
            ),
        ]

InternS1ProcessingInfo

Bases: BaseProcessingInfo

ProcessingInfo for InternS1-style models.

Source code in vllm/model_executor/models/interns1.py
class InternS1ProcessingInfo(BaseProcessingInfo):
    """ProcessingInfo for InternS1-style models."""

    def get_hf_processor(self, **kwargs: object) -> InternVLProcessor:
        hf_processor = self.ctx.get_hf_processor(InternVLProcessor, **kwargs)
        hf_processor.video_processor = cached_video_processor_from_config(
            self.ctx.model_config,
            processor_cls=InternVLVideoProcessor,
            size=hf_processor.image_processor.size,
            **kwargs,
        )
        return hf_processor

    def get_supported_mm_limits(self) -> Mapping[str, int | None]:
        return {"image": None, "video": None}

    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
        processor: GotOcr2ImageProcessorFast | None = None,
    ) -> int:
        if processor is None:
            processor = self.get_hf_processor().image_processor

        if not isinstance(processor, GotOcr2ImageProcessorFast):
            raise ValueError(
                f"GotOcr2ImageProcessorFast is expected but got {type(processor)}"
            )
        num_image_patches = processor.get_number_of_image_patches(
            image_height, image_width, images_kwargs=dict()
        )
        num_image_tokens = self.get_hf_processor().image_seq_length * num_image_patches
        return num_image_tokens

    def resolve_target_ratios(self, use_thumbnail: bool | None = None):
        image_processor = self.get_hf_processor().image_processor
        min_dynamic_patch = image_processor.min_patches
        max_dynamic_patch = image_processor.max_patches
        # HF format's InternVL processor uses `crop_to_patches` which is
        # equivalent to `use_thumbnail` in original format.
        use_thumbnail = image_processor.crop_to_patches
        dynamic_image_size = True
        min_num, max_num = resolve_interns1_min_max_num(
            min_dynamic_patch,
            max_dynamic_patch,
            dynamic_image_size,
            use_thumbnail=use_thumbnail,
        )

        return get_interns1_target_ratios(min_num, max_num)

    def get_image_size_with_most_features(self) -> ImageSize:
        processor = self.get_hf_processor()

        hf_config = self.ctx.get_hf_config()
        base_height, base_width = hf_config.vision_config.image_size
        target_ratios = self.resolve_target_ratios()

        largest_feature_size, largest_feature_pinpoint = 0, None
        for wr, hr in target_ratios:
            width, height = base_width * wr, base_height * hr

            feat_size = self.get_num_image_tokens(
                image_width=width,
                image_height=height,
                processor=processor.image_processor,
            )
            if feat_size > largest_feature_size:
                largest_feature_size = feat_size
                largest_feature_pinpoint = ImageSize(width=width, height=height)

        assert not (largest_feature_size == 0 or largest_feature_pinpoint is None), (
            "Cannot have a largest feature size of 0!"
        )

        return largest_feature_pinpoint

    def get_max_image_tokens(self) -> int:
        processor = self.get_hf_processor()
        target_width, target_height = self.get_image_size_with_most_features()

        return self.get_num_image_tokens(
            image_width=target_width,
            image_height=target_height,
            processor=processor.image_processor,
        )

    def get_num_frames_with_most_features(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> int:
        max_images = mm_counts.get("image", 0)
        max_videos = mm_counts.get("video", 0)

        processor = self.get_hf_processor()

        max_image_tokens = self.get_max_image_tokens() * max_images
        max_total_frames = (seq_len - max_image_tokens) // processor.image_seq_length
        max_frames_per_video = max_total_frames // max(max_videos, 1)

        return max(max_frames_per_video, 1)

InternS1VideoEmbeddingInputs

Bases: TensorSchema

Dimensions
  • nv: Number of videos
  • tvfs: Total video feature size
  • hs: Hidden size (must match language model backbone)
Source code in vllm/model_executor/models/interns1.py
class InternS1VideoEmbeddingInputs(TensorSchema):
    """
    Dimensions:
        - nv: Number of videos
        - tvfs: Total video feature size
        - hs: Hidden size (must match language model backbone)
    """

    type: Literal["video_embeds"] = "video_embeds"
    data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("nv", "tvfs", "hs")]

InternS1VideoPixelInputs

Bases: TensorSchema

Dimensions
  • bnv: Batch size * number of videos * number of frames
  • bn: Batch size * number of images
  • c: Number of channels (3)
  • h: Height
  • w: Width
Source code in vllm/model_executor/models/interns1.py
class InternS1VideoPixelInputs(TensorSchema):
    """
    Dimensions:
        - bnv: Batch size * number of videos * number of frames
        - bn: Batch size * number of images
        - c: Number of channels (3)
        - h: Height
        - w: Width
    """

    type: Literal["pixel_values_videos"] = "pixel_values_videos"
    pixel_values: Annotated[torch.Tensor, TensorShape("bnv", 3, "h", "w")]
    num_patches: Annotated[torch.Tensor, TensorShape("bn")]