Skip to content

vllm.model_executor.models.arcee

ArceeDecoderLayer

Bases: Module

Transformer decoder block for Arcee, with self-attention and ReLU^2 MLP.

Source code in vllm/model_executor/models/arcee.py
class ArceeDecoderLayer(nn.Module):
    """Transformer decoder block for Arcee, with self-attention and
    ReLU^2 MLP."""

    def __init__(
        self,
        config: LlamaConfig,
        cache_config: Any | None = None,
        quant_config: Any | None = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
        # Determine if attention bias is needed (some variants use bias terms)
        attention_bias = getattr(config, "attention_bias", False) or getattr(
            config, "bias", False
        )
        bias_o_proj = attention_bias
        if hasattr(config, "qkv_bias"):
            attention_bias = config.qkv_bias

        # Self-Attention (using LLaMA's attention structure)
        from vllm.model_executor.models.llama import (
            LlamaAttention,  # import here to avoid circular import
        )

        self.self_attn = LlamaAttention(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=getattr(
                config, "num_key_value_heads", config.num_attention_heads
            ),
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            bias=attention_bias,
            bias_o_proj=bias_o_proj,
            cache_config=cache_config,
            prefix=f"{prefix}.self_attn",
            attn_type=getattr(
                config, "attn_type", "decoder"
            ),  # assume decoder (causal) unless specified
        )
        # MLP with ReLU^2 activation
        self.mlp = ArceeMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            bias=getattr(config, "mlp_bias", False),
            prefix=f"{prefix}.mlp",
        )
        # Layer normalization layers (RMSNorm as in LLaMA)
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: torch.Tensor | None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Self-Attention block
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            # Fused residual add + layernorm if supported
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
        # Feed-forward block
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

ArceeForCausalLM

Bases: Module, SupportsLoRA, SupportsPP

Arcee Model for causal language modeling, integrated with vLLM runtime.

Source code in vllm/model_executor/models/arcee.py
class ArceeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
    """Arcee Model for causal language modeling, integrated with vLLM
    runtime."""

    # Map fused module names to their submodule components
    # (for quantization and LoRA)
    packed_modules_mapping = {
        "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    }

    def __init__(self, *, vllm_config, prefix: str = "") -> None:
        super().__init__()
        config = vllm_config.model_config.hf_config
        self.config = config

        # Initialize the inner Transformer model (ArceeModel)
        self.model = ArceeModel(vllm_config=vllm_config, prefix=f"{prefix}.model")
        # On the last pipeline stage, set up the LM head and logits processor
        if get_pp_group().is_last_rank:
            # Determine vocabulary size (including any LoRA extra tokens
            # for padded LM head)

            self.lm_head = ParallelLMHead(
                config.vocab_size,
                config.hidden_size,
                quant_config=vllm_config.quant_config,
                bias=getattr(config, "lm_head_bias", False),
                prefix=f"{prefix}.lm_head",
            )
            if config.tie_word_embeddings:
                # Tie output weights with input embedding matrix
                self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
            logit_scale = getattr(config, "logit_scale", 1.0)
            self.logits_processor = LogitsProcessor(
                config.vocab_size, scale=logit_scale
            )
        else:
            # Placeholder for lm_head on non-last ranks
            self.lm_head = PPMissingLayer()

        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors
        )

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
    ) -> torch.Tensor | IntermediateTensors:
        model_output = self.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return model_output

    def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor | None:
        # Compute final logits from hidden states (last pipeline rank only)
        logits = self.logits_processor(self.lm_head, hidden_states)
        return logits

    def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.embed_input_ids(input_ids)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        """Load weights into the model (delegates to inner model and handles
        tied embeddings)."""
        loader = AutoWeightsLoader(
            self,
            skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
            skip_substrs=["gate_proj"],
        )
        # AutoWeightLoader handles weight name remapping, including fusing
        # separate q_proj, k_proj, v_proj into qkv_proj
        return loader.load_weights(weights)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]

Load weights into the model (delegates to inner model and handles tied embeddings).

Source code in vllm/model_executor/models/arcee.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    """Load weights into the model (delegates to inner model and handles
    tied embeddings)."""
    loader = AutoWeightsLoader(
        self,
        skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
        skip_substrs=["gate_proj"],
    )
    # AutoWeightLoader handles weight name remapping, including fusing
    # separate q_proj, k_proj, v_proj into qkv_proj
    return loader.load_weights(weights)

ArceeMLP

Bases: Module

Feed-forward layer for Arcee using ReLU^2 activation (no gating as in LLaMA).

Source code in vllm/model_executor/models/arcee.py
class ArceeMLP(nn.Module):
    """Feed-forward layer for Arcee using ReLU^2 activation
    (no gating as in LLaMA)."""

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Any | None = None,
        bias: bool = False,
        prefix: str = "",
        reduce_results: bool = True,
    ) -> None:
        super().__init__()
        # Single linear projection up to intermediate size
        # (no separate gate projection)
        self.up_proj = ColumnParallelLinear(
            input_size=hidden_size,
            output_size=intermediate_size,
            bias=bias,
            quant_config=quant_config,
            prefix=f"{prefix}.up_proj",
        )
        # Down projection back to hidden size
        self.down_proj = RowParallelLinear(
            input_size=intermediate_size,
            output_size=hidden_size,
            bias=bias,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=f"{prefix}.down_proj",
        )
        if hidden_act != "relu2":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only 'relu2' is supported for AFM."
            )
        # Define ReLU^2 activation: (ReLU(x))^2 elementwise
        self.act_fn = ReLUSquaredActivation()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, _ = self.up_proj(x)  # Project to intermediate size
        x = self.act_fn(x)  # Apply ReLU^2 activation elementwise
        x, _ = self.down_proj(x)  # Project back down to hidden size
        return x

ArceeModel

Bases: Module

The transformer model backbone for Arcee (embedding layer + stacked decoder blocks + final norm).

Source code in vllm/model_executor/models/arcee.py
@support_torch_compile
class ArceeModel(nn.Module):
    """The transformer model backbone for Arcee (embedding layer + stacked
    decoder blocks + final norm)."""

    def __init__(
        self,
        *,
        vllm_config,
        prefix: str = "",
        layer_type: type[nn.Module] = ArceeDecoderLayer,
    ) -> None:
        super().__init__()
        config: LlamaConfig = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        self.quant_config = quant_config
        self.config = config
        self.vocab_size = config.vocab_size

        # Word embeddings (parallelized if using pipeline parallel)
        if get_pp_group().is_first_rank or (
            config.tie_word_embeddings and get_pp_group().is_last_rank
        ):
            self.embed_tokens = VocabParallelEmbedding(
                self.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
            )
        else:
            self.embed_tokens = PPMissingLayer()  # placeholder on non-embedding ranks

        # Build decoder layers across pipeline ranks
        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: layer_type(
                config=config,
                cache_config=cache_config,
                quant_config=quant_config,
                prefix=prefix,
            ),
            prefix=f"{prefix}.layers",
        )
        # Final RMSNorm on the last pipeline stage
        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()

        # For optional capturing of intermediate hidden states
        # (not used by default)
        self.aux_hidden_state_layers: tuple[int, ...] = tuple()

        # Prepare factory for empty intermediate tensors
        # (for pipeline scheduling)
        self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size
        )

    def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None,
        inputs_embeds: torch.Tensor | None = None,
    ) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]:
        # Embedding lookup (on first pipeline rank)
        if get_pp_group().is_first_rank:
            hidden_states = (
                inputs_embeds
                if inputs_embeds is not None
                else self.embed_input_ids(input_ids)
            )
            residual = None
        else:
            assert intermediate_tensors is not None, (
                "IntermediateTensors must be provided for non-first pipeline ranks"
            )
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        aux_hidden_states: list[torch.Tensor] = []
        for idx, layer in enumerate(
            islice(self.layers, self.start_layer, self.end_layer)
        ):
            if idx in self.aux_hidden_state_layers:
                aux_hidden_states.append(
                    hidden_states + residual
                )  # capture pre-layer hidden state if needed
            hidden_states, residual = layer(positions, hidden_states, residual)

        if not get_pp_group().is_last_rank:
            # Send intermediate results to the next pipeline stage
            return IntermediateTensors(
                {"hidden_states": hidden_states, "residual": residual}
            )
        # On last rank: apply final layer norm
        hidden_states, _ = self.norm(hidden_states, residual)
        if len(aux_hidden_states) > 0:
            return hidden_states, aux_hidden_states
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        """Load weights, mapping q/k/v projections to fused qkv_proj."""
        stacked_params_mapping = [
            (".qkv_proj", ".q_proj", "q"),
            (".qkv_proj", ".k_proj", "k"),
            (".qkv_proj", ".v_proj", "v"),
        ]

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()

        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                continue

            if self.quant_config is not None and (
                scale_name := self.quant_config.get_cache_scale(name)
            ):
                param = params_dict[scale_name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                loaded_weight = (
                    loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
                )
                weight_loader(param, loaded_weight)
                loaded_params.add(scale_name)
                continue

            if "scale" in name or "zero_point" in name:
                remapped_name = maybe_remap_kv_scale_name(name, params_dict)
                if remapped_name is None:
                    continue
                name = remapped_name

            mapped = False
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue

                name = name.replace(weight_name, param_name)

                if name.endswith(".bias") and name not in params_dict:
                    mapped = True
                    break

                if is_pp_missing_parameter(name, self):
                    mapped = True
                    break

                param = params_dict[name]
                weight_loader = param.weight_loader  # type: ignore[attr-defined]
                weight_loader(param, loaded_weight, shard_id)
                loaded_params.add(name)
                mapped = True
                break

            if mapped:
                continue

            if name.endswith(".bias") and name not in params_dict:
                continue

            if is_pp_missing_parameter(name, self):
                continue

            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader", default_weight_loader)
            weight_loader(param, loaded_weight)
            loaded_params.add(name)

        return loaded_params

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]

Load weights, mapping q/k/v projections to fused qkv_proj.

Source code in vllm/model_executor/models/arcee.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    """Load weights, mapping q/k/v projections to fused qkv_proj."""
    stacked_params_mapping = [
        (".qkv_proj", ".q_proj", "q"),
        (".qkv_proj", ".k_proj", "k"),
        (".qkv_proj", ".v_proj", "v"),
    ]

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()

    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue
        if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
            continue

        if self.quant_config is not None and (
            scale_name := self.quant_config.get_cache_scale(name)
        ):
            param = params_dict[scale_name]
            weight_loader = getattr(param, "weight_loader", default_weight_loader)
            loaded_weight = (
                loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
            )
            weight_loader(param, loaded_weight)
            loaded_params.add(scale_name)
            continue

        if "scale" in name or "zero_point" in name:
            remapped_name = maybe_remap_kv_scale_name(name, params_dict)
            if remapped_name is None:
                continue
            name = remapped_name

        mapped = False
        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue

            name = name.replace(weight_name, param_name)

            if name.endswith(".bias") and name not in params_dict:
                mapped = True
                break

            if is_pp_missing_parameter(name, self):
                mapped = True
                break

            param = params_dict[name]
            weight_loader = param.weight_loader  # type: ignore[attr-defined]
            weight_loader(param, loaded_weight, shard_id)
            loaded_params.add(name)
            mapped = True
            break

        if mapped:
            continue

        if name.endswith(".bias") and name not in params_dict:
            continue

        if is_pp_missing_parameter(name, self):
            continue

        param = params_dict[name]
        weight_loader = getattr(param, "weight_loader", default_weight_loader)
        weight_loader(param, loaded_weight)
        loaded_params.add(name)

    return loaded_params