Skip to content

vllm.model_executor.layers.quantization.mxfp4

Mxfp4Config

Bases: QuantizationConfig

Source code in vllm/model_executor/layers/quantization/mxfp4.py
class Mxfp4Config(QuantizationConfig):
    def __init__(self, ignored_layers: list[str] | None = None):
        super().__init__()
        self.ignored_layers = ignored_layers

    @classmethod
    def from_config(cls, config):
        return cls()

    @classmethod
    def get_min_capability(cls) -> int:
        return 80

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "mxfp4"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.bfloat16]

    @classmethod
    def get_config_filenames(cls) -> list[str]:
        return []

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
    ) -> "QuantizeMethodBase | None":
        if isinstance(layer, LinearBase):
            if self.ignored_layers and is_layer_skipped(
                prefix=prefix,
                ignored_layers=self.ignored_layers,
                fused_mapping=self.packed_modules_mapping,
            ):
                return UnquantizedLinearMethod()
            # TODO: Add support for MXFP4 Linear Method.
            # MXFP4 LinearMethod is available in AMD-Quark, refer to that implementation
            # if you are interested in enabling MXFP4 here.
            logger.debug_once(
                "MXFP4 linear layer is not implemented - falling back to "
                "UnquantizedLinearMethod.",
                scope="local",
            )
            return UnquantizedLinearMethod()
        elif isinstance(layer, FusedMoE):
            if current_platform.is_xpu():
                return XpuMxfp4MoEMethod(layer.moe_config)
            else:
                quant_method = Mxfp4MoEMethod(layer.moe_config)
                quant_method.marlin_input_dtype = get_marlin_input_dtype(prefix)
                return quant_method
        elif isinstance(layer, Attention):
            # TODO: Add support for MXFP4 Attention.
            logger.debug_once(
                "MXFP4 attention layer is not implemented. "
                "Skipping quantization for this layer.",
                scope="local",
            )
        return None

    def is_mxfp4_quant(self, prefix: str, layer: torch.nn.Module) -> bool:
        """MXFP4 config always uses MXFP4 quantization."""
        return True

is_mxfp4_quant

is_mxfp4_quant(prefix: str, layer: Module) -> bool

MXFP4 config always uses MXFP4 quantization.

Source code in vllm/model_executor/layers/quantization/mxfp4.py
def is_mxfp4_quant(self, prefix: str, layer: torch.nn.Module) -> bool:
    """MXFP4 config always uses MXFP4 quantization."""
    return True

Mxfp4MoEMethod

Bases: FusedMoEMethodBase

MXFP4 MoE quantization method.

Source code in vllm/model_executor/layers/quantization/mxfp4.py
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
class Mxfp4MoEMethod(FusedMoEMethodBase):
    """MXFP4 MoE quantization method."""

    def __init__(self, moe: FusedMoEConfig):
        super().__init__(moe)
        self.weight_dtype = "mxfp4"
        self.mxfp4_backend = get_mxfp4_backend(moe.is_lora_enabled)

        self.marlin_input_dtype = None
        self.max_capture_size = (
            get_current_vllm_config().compilation_config.max_cudagraph_capture_size
        )

        assert self.mxfp4_backend != Mxfp4Backend.NONE, (
            f"get_mxfp4_backend(with_lora_support={moe.is_lora_enabled}) found"
            "no compatible MXFP4 MoE backend (FlashInfer/Marlin/Triton)."
            "Please check your environment and try again."
        )
        self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        self.num_experts = num_experts
        weight_dtype = torch.uint8
        scale_dtype = torch.uint8

        # FIXME (zyongye): ship after torch and safetensors support mxfp4
        # is_torch_mxfp4_available = (
        #     hasattr(torch, "float4_e2m1fn_x2") and
        #     hasattr(torch, "float8_e8m0fnu"))
        # if is_torch_mxfp4_available:
        #     weight_dtype = torch.float4_e2m1fn_x2
        #     scale_dtype = torch.float8_e8m0fnu

        mxfp4_block = 32

        intermediate_size_per_partition_after_pad = intermediate_size_per_partition
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            # The moe marlin kernel requires that for each linear
            # n % 256 == 0 and k % 128 == 0.
            # In gate_up_proj:
            #    n = 2 * intermediate_size_per_partition_after_pad
            #    k = hidden_size
            # In down_proj
            #    n = hidden_size
            #    k = intermediate_size_per_partition_after_pad
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 128
            )
            if current_platform.is_xpu():
                hidden_size = round_up(hidden_size, 128)
            else:
                hidden_size = round_up(hidden_size, 256)

            layer.params_dtype = params_dtype
            layer.num_experts = num_experts
            layer.hidden_size = hidden_size
            layer.intermediate_size_per_partition = (
                intermediate_size_per_partition_after_pad
            )
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
        ):
            # pad the intermediate size to be a multiple of 2 * mxfp4_block
            # for to hold non-uniform sharded tensor as well as swizzling
            # other padding to increase performance
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 256
            )
            hidden_size = round_up(hidden_size, 256)
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
            or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
        ):
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 128
            )
            hidden_size = round_up(hidden_size, 128)
        elif current_platform.is_rocm():
            pad_align = get_padding_alignment()
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, pad_align
            )
            hidden_size = round_up(hidden_size, pad_align)
        else:
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 64
            )

        self.intermediate_size = intermediate_size_per_partition_after_pad
        self.hidden_size = hidden_size
        # Fused gate_up_proj (column parallel)
        w13_weight = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                hidden_size // 2,
                dtype=weight_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        w13_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                hidden_size // mxfp4_block,
                dtype=scale_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)
        set_weight_attrs(w13_weight_scale, extra_weight_attrs)

        w13_bias = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                dtype=torch.bfloat16,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_bias", w13_bias)
        set_weight_attrs(w13_bias, extra_weight_attrs)

        # down_proj (row parallel)
        w2_weight = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                intermediate_size_per_partition_after_pad // 2,
                dtype=weight_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

        w2_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                intermediate_size_per_partition_after_pad // mxfp4_block,
                dtype=scale_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)
        set_weight_attrs(w2_weight_scale, extra_weight_attrs)

        w2_bias = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                dtype=torch.bfloat16,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_bias", w2_bias)
        set_weight_attrs(w2_bias, extra_weight_attrs)

    def process_weights_after_loading(self, layer):
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            prepare_moe_fp4_layer_for_marlin(layer, input_dtype=self.marlin_input_dtype)
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
        ):
            from flashinfer.fp4_quantization import nvfp4_block_scale_interleave
            from flashinfer.fused_moe.core import get_w2_permute_indices_with_cache

            layer.gemm1_alpha = Parameter(
                torch.tensor([1.702] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_beta = Parameter(
                torch.tensor([1.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_clamp_limit = Parameter(
                torch.tensor([7.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            sf_block_size = 32  # mxfp4 block size

            assert (
                layer.w13_weight.dim() == 3
                and layer.w13_weight.shape[0] == self.num_experts
                and layer.w13_weight.shape[1] == self.intermediate_size * 2
                and layer.w13_weight.shape[2] == self.hidden_size // 2
            )
            assert (
                layer.w13_weight_scale.dim() == 3
                and layer.w13_weight_scale.shape[0] == self.num_experts
                and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
                and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
            )
            assert (
                layer.w2_weight.dim() == 3
                and layer.w2_weight.shape[0] == self.num_experts
                and layer.w2_weight.shape[1] == self.hidden_size
                and layer.w2_weight.shape[2] == self.intermediate_size // 2
            )
            assert (
                layer.w2_weight_scale.dim() == 3
                and layer.w2_weight_scale.shape[1] == self.hidden_size
                and layer.w2_weight_scale.shape[2]
                == self.intermediate_size // sf_block_size
            )
            assert (
                layer.w13_bias.dim() == 2
                and layer.w13_bias.shape[0] == self.num_experts
                and layer.w13_bias.shape[1] == self.intermediate_size * 2
            )
            assert (
                layer.w2_bias.dim() == 2
                and layer.w2_bias.shape[0] == self.num_experts
                and layer.w2_bias.shape[1] == self.hidden_size
            )

            w13_weight_scale = layer.w13_weight_scale.data
            w2_weight_scale = layer.w2_weight_scale.data
            w13_weight = layer.w13_weight.data
            w2_weight = layer.w2_weight.data
            w13_bias = layer.w13_bias.data.to(torch.float32)
            w2_bias = layer.w2_bias.data.to(torch.float32)

            # Swap w1 and w3 as the definition of
            # swiglu is different in the trtllm-gen
            def swap_every_two_rows(x, axis=-1):
                shape = x.shape
                if axis < 0:
                    axis = len(shape) + axis

                # Create a new shape with pairs swapped along specified axis
                new_shape = list(shape)
                new_shape[axis] = shape[axis] // 2
                new_shape.insert(axis + 1, 2)

                # Reshape to expose pairs, swap them, and reshape back
                x = x.reshape(*new_shape)
                x = x.flip(axis + 1)
                new_shape = list(shape)
                return x.reshape(*new_shape)

            w13_weight_scale = swap_every_two_rows(w13_weight_scale, -2)
            w13_weight = swap_every_two_rows(w13_weight, -2)
            w13_bias = swap_every_two_rows(w13_bias, -1)

            # Do not interleave as the checkpoint is already interleaved

            # Shuffle weights and scaling factors for transposed mma output
            gemm1_weights_mxfp4_shuffled = []
            gemm1_scales_mxfp4_shuffled = []
            gemm2_weights_mxfp4_shuffled = []
            gemm2_scales_mxfp4_shuffled = []
            gemm1_bias_shuffled = []
            gemm2_bias_shuffled = []
            epilogue_tile_m = 128  # FIXME: this depends on the kernel internals
            for i in range(self.num_experts):
                # w13 weight shuffling
                permute_indices = get_w2_permute_indices_with_cache(
                    self._cache_permute_indices,
                    w13_weight[i].view(torch.uint8),
                    epilogue_tile_m,
                )
                gemm1_weights_mxfp4_shuffled.append(
                    w13_weight[i]
                    .view(torch.uint8)[permute_indices.to(w13_weight.device)]
                    .contiguous()
                )
                # w13 scale shuffling
                permute_sf_indices = get_w2_permute_indices_with_cache(
                    self._cache_permute_indices,
                    w13_weight_scale[i].view(torch.uint8),
                    epilogue_tile_m,
                    num_elts_per_sf=16,
                )
                gemm1_scales_mxfp4_shuffled.append(
                    nvfp4_block_scale_interleave(
                        w13_weight_scale[i]
                        .view(torch.uint8)[
                            permute_sf_indices.to(w13_weight_scale.device)
                        ]
                        .contiguous()
                    )
                )
                # w13 bias shuffling
                permute_bias_indices = get_w2_permute_indices_with_cache(
                    self._cache_permute_indices,
                    w13_bias[i].clone().reshape(-1, 1),
                    epilogue_tile_m,
                )
                gemm1_bias_shuffled.append(
                    w13_bias[i]
                    .clone()
                    .reshape(-1, 1)[permute_bias_indices.to(w13_bias.device)]
                    .contiguous()
                )
                # w2 weight shuffling
                permute_indices = get_w2_permute_indices_with_cache(
                    self._cache_permute_indices,
                    w2_weight[i].view(torch.uint8),
                    epilogue_tile_m,
                )
                gemm2_weights_mxfp4_shuffled.append(
                    w2_weight[i]
                    .view(torch.uint8)[permute_indices.to(w2_weight.device)]
                    .contiguous()
                )
                # w2 scale shuffling
                permute_sf_indices = get_w2_permute_indices_with_cache(
                    self._cache_permute_indices,
                    w2_weight_scale[i].view(torch.uint8),
                    epilogue_tile_m,
                    num_elts_per_sf=16,
                )
                gemm2_scales_mxfp4_shuffled.append(
                    nvfp4_block_scale_interleave(
                        w2_weight_scale[i]
                        .view(torch.uint8)[
                            permute_sf_indices.to(w2_weight_scale.device)
                        ]
                        .contiguous()
                    )
                )
                # w2 bias shuffling
                permute_indices = get_w2_permute_indices_with_cache(
                    self._cache_permute_indices,
                    w2_bias[i].clone().reshape(-1, 1),
                    epilogue_tile_m,
                )
                gemm2_bias_shuffled.append(
                    w2_bias[i]
                    .clone()
                    .reshape(-1, 1)[permute_indices.to(w2_bias.device)]
                    .contiguous()
                )

            w13_weight = torch.stack(gemm1_weights_mxfp4_shuffled)
            w13_weight_scale = (
                torch.stack(gemm1_scales_mxfp4_shuffled)
                .reshape(
                    self.num_experts,
                    2 * self.intermediate_size,
                    self.hidden_size // sf_block_size,
                )
                .view(torch.float8_e4m3fn)
            )

            w2_weight = torch.stack(gemm2_weights_mxfp4_shuffled)
            w2_weight_scale = (
                torch.stack(gemm2_scales_mxfp4_shuffled)
                .reshape(
                    self.num_experts,
                    self.hidden_size,
                    self.intermediate_size // sf_block_size,
                )
                .view(torch.float8_e4m3fn)
            )

            layer.w13_weight = Parameter(w13_weight, requires_grad=False)
            layer.w13_weight_scale = Parameter(w13_weight_scale, requires_grad=False)
            layer.w2_weight = Parameter(w2_weight, requires_grad=False)
            layer.w2_weight_scale = Parameter(w2_weight_scale, requires_grad=False)
            layer.w13_bias = Parameter(
                torch.stack(gemm1_bias_shuffled).reshape(self.num_experts, -1),
                requires_grad=False,
            )
            layer.w2_bias = Parameter(
                torch.stack(gemm2_bias_shuffled).reshape(self.num_experts, -1),
                requires_grad=False,
            )
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
            or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
        ):
            layer.gemm1_alpha = Parameter(
                torch.tensor([1.702] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_beta = Parameter(
                torch.tensor([1.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_clamp_limit = Parameter(
                torch.tensor([7.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )

            sf_block_size = 32  # mxfp4 block size

            # Common shape assertions
            assert (
                layer.w13_weight.dim() == 3
                and layer.w13_weight.shape[0] == self.num_experts
                and layer.w13_weight.shape[1] == self.intermediate_size * 2
                and layer.w13_weight.shape[2] == self.hidden_size // 2
            )
            assert (
                layer.w13_weight_scale.dim() == 3
                and layer.w13_weight_scale.shape[0] == self.num_experts
                and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
                and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
            )
            assert (
                layer.w2_weight.dim() == 3
                and layer.w2_weight.shape[0] == self.num_experts
                and layer.w2_weight.shape[1] == self.hidden_size
                and layer.w2_weight.shape[2] == self.intermediate_size // 2
            )
            assert (
                layer.w2_weight_scale.dim() == 3
                and layer.w2_weight_scale.shape[1] == self.hidden_size
                and layer.w2_weight_scale.shape[2]
                == self.intermediate_size // sf_block_size
            )
            assert (
                layer.w13_bias.dim() == 2
                and layer.w13_bias.shape[0] == self.num_experts
                and layer.w13_bias.shape[1] == self.intermediate_size * 2
            )
            assert (
                layer.w2_bias.dim() == 2
                and layer.w2_bias.shape[0] == self.num_experts
                and layer.w2_bias.shape[1] == self.hidden_size
            )

            # De-interleave and swap for w13 weight, bias, and scales
            w13_w = layer.w13_weight.data
            gate_w, up_w = w13_w[:, ::2, :], w13_w[:, 1::2, :]
            deinterleaved_w13_w = torch.cat([gate_w, up_w], dim=1)
            w1_w, w3_w = torch.chunk(deinterleaved_w13_w, 2, dim=1)
            w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)

            w13_b = layer.w13_bias.data.to(torch.float32)
            gate_b, up_b = w13_b[:, ::2], w13_b[:, 1::2]
            deinterleaved_w13_b = torch.cat([gate_b, up_b], dim=1)
            b1, b3 = torch.chunk(deinterleaved_w13_b, 2, dim=-1)
            w13_bias_swapped = torch.cat([b3, b1], dim=-1).to(torch.bfloat16)

            w13_s = layer.w13_weight_scale.data
            gate_s, up_s = w13_s[:, ::2, :], w13_s[:, 1::2, :]
            deinterleaved_w13_s = torch.cat([gate_s, up_s], dim=1)
            s1, s3 = torch.chunk(deinterleaved_w13_s, 2, dim=1)
            w13_scale_swapped = torch.cat([s3, s1], dim=1)

            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
                from flashinfer import block_scale_interleave

                orig_shape = w13_scale_swapped.shape
                w13_scale_interleaved = block_scale_interleave(
                    w13_scale_swapped.view(torch.uint8)
                ).reshape(orig_shape)

                w2_s = layer.w2_weight_scale.data
                orig_shape = w2_s.shape
                w2_scale_interleaved = block_scale_interleave(
                    w2_s.view(torch.uint8)
                ).reshape(orig_shape)

                layer.w13_weight = Parameter(w13_weight_swapped, requires_grad=False)
                layer.w13_weight_scale = Parameter(
                    w13_scale_interleaved, requires_grad=False
                )
                layer.w13_bias = Parameter(w13_bias_swapped, requires_grad=False)
                layer.w2_weight_scale = Parameter(
                    w2_scale_interleaved, requires_grad=False
                )
            elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:

                def _interleave_mxfp4_cutlass_sm90(w):
                    w_shape = w.shape
                    w_interleaved = w.reshape(
                        w_shape[0], w_shape[1], (w_shape[2] // 4), 4
                    )
                    w_interleaved = w_interleaved.permute(0, 2, 1, 3)
                    w_interleaved = w_interleaved.reshape(
                        w_shape[0], w_shape[2] // 4, w_shape[1] * 4
                    )
                    return w_interleaved

                w31_scales = w13_scale_swapped.to(torch.uint8).view(torch.uint8)
                w31_scales_interleaved = _interleave_mxfp4_cutlass_sm90(w31_scales)

                w2_weight_scale = layer.w2_weight_scale.data
                w2_scales = w2_weight_scale.to(torch.uint8).view(torch.uint8)
                w2_scales_interleaved = _interleave_mxfp4_cutlass_sm90(w2_scales)

                layer.w13_weight = torch.nn.Parameter(
                    torch.cat([w3_w, w1_w], dim=1), requires_grad=False
                )
                layer.w13_bias = torch.nn.Parameter(
                    w13_bias_swapped, requires_grad=False
                )
                layer.w13_weight_scale = torch.nn.Parameter(
                    w31_scales_interleaved, requires_grad=False
                )
                layer.w2_weight_scale = torch.nn.Parameter(
                    w2_scales_interleaved, requires_grad=False
                )
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig

            w13_bias = layer.w13_bias.to(torch.float32)
            w2_bias = layer.w2_bias.to(torch.float32)

            layer.w13_bias = Parameter(w13_bias, requires_grad=False)
            layer.w2_bias = Parameter(w2_bias, requires_grad=False)

            # Ideally we'd use FusedMoEModularKernel.prepare_finalize object
            # (stored in self.fused_experts) to determine if the MoE has a
            # batched activation format. As self.fused_experts is not
            # initialized at this point, we resort to checking the MoE config
            # directly.
            is_batched_moe = self.moe.use_pplx_kernels or self.moe.use_deepep_ll_kernels
            if is_batched_moe:
                num_warps = 4 if envs.VLLM_MOE_DP_CHUNK_SIZE <= 512 else 8
            else:
                num_warps = 8

            w13_weight, w13_flex, w13_scale = _swizzle_mxfp4(
                layer.w13_weight, layer.w13_weight_scale, num_warps
            )
            w2_weight, w2_flex, w2_scale = _swizzle_mxfp4(
                layer.w2_weight, layer.w2_weight_scale, num_warps
            )

            self.w13_precision_config = PrecisionConfig(
                weight_scale=w13_scale, flex_ctx=FlexCtx(rhs_data=w13_flex)
            )
            self.w2_precision_config = PrecisionConfig(
                weight_scale=w2_scale, flex_ctx=FlexCtx(rhs_data=w2_flex)
            )

            self.w13_weight = w13_weight
            self.w2_weight = w2_weight
            del layer.w13_weight
            del layer.w2_weight
            layer.w13_weight = w13_weight
            layer.w2_weight = w2_weight
        else:
            raise ValueError(
                f"Unsupported mxfp4_backend: {self.mxfp4_backend}: "
                f"should be one of: {list(Mxfp4Backend)}."
            )

    def get_fused_moe_quant_config(
        self, layer: torch.nn.Module
    ) -> FusedMoEQuantConfig | None:
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            return mxfp4_w4a16_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=layer.w13_weight_scale,
                w2_scale=layer.w2_weight_scale,
            )
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            w1_scale = self.w13_precision_config
            w2_scale = self.w2_precision_config
            return mxfp4_w4a16_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
            )
        elif self.mxfp4_backend in [
            Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM,
            Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS,
        ]:
            return mxfp4_mxfp8_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=layer.w13_weight_scale,
                w2_scale=layer.w2_weight_scale,
            )
        elif self.mxfp4_backend in [Mxfp4Backend.SM100_FI_MXFP4_BF16]:
            return mxfp4_w4a16_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=layer.w13_weight_scale,
                w2_scale=layer.w2_weight_scale,
            )
        else:
            w1_scale = layer.w13_weight_scale
            w2_scale = layer.w2_weight_scale
            return ocp_mx_moe_quant_config(
                quant_dtype="mxfp4",
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
            )

    def select_gemm_impl(
        self,
        prepare_finalize: mk.FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> mk.FusedMoEPermuteExpertsUnpermute:
        if (
            prepare_finalize.activation_format
            == mk.FusedMoEActivationFormat.BatchedExperts
        ):
            if self.mxfp4_backend == Mxfp4Backend.MARLIN:
                max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
                assert max_num_tokens_per_rank is not None
                assert self.moe_quant_config is not None
                return BatchedMarlinExperts(
                    max_num_tokens=max_num_tokens_per_rank,
                    num_dispatchers=prepare_finalize.num_dispatchers(),
                    quant_config=self.moe_quant_config,
                    moe_config=self.moe,
                )
            else:
                raise NotImplementedError(
                    f"Incompatible Mxfp4 backend ({self.mxfp4_backend}) for "
                    "EP batched experts format"
                )
        else:
            assert self.moe_quant_config is not None
            if (
                self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
                or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
            ):
                # B200 code-path
                kwargs = {
                    "gemm1_alpha": layer.gemm1_alpha,
                    "gemm1_beta": layer.gemm1_beta,
                    "gemm1_clamp_limit": layer.gemm1_clamp_limit,
                    # TODO(bnell): part of quant_config
                    "max_capture_size": self.max_capture_size,
                }
                return TrtLlmGenExperts(self.moe, self.moe_quant_config, **kwargs)
            elif self.mxfp4_backend == Mxfp4Backend.MARLIN:
                return MarlinExperts(self.moe, self.moe_quant_config)
            elif self.mxfp4_backend == Mxfp4Backend.TRITON:
                if self.moe.is_lora_enabled:
                    return UnfusedOAITritonExperts(self.moe, self.moe_quant_config)
                return OAITritonExperts(self.moe, self.moe_quant_config)
            else:
                raise NotImplementedError(
                    f"Incompatible Mxfp4 backend ({self.mxfp4_backend}) for EP"
                )

    @property
    def is_monolithic(self) -> bool:
        return (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
            or self.mxfp4_backend == Mxfp4Backend.TRITON
        )

    def apply(
        self,
        layer: FusedMoE,
        x: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        shared_experts_input: torch.Tensor | None,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        assert not self.is_monolithic
        if layer.enable_eplb:
            raise NotImplementedError("EPLB is not supported for mxfp4")

        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            return fused_marlin_moe(
                x,
                layer.w13_weight,
                layer.w2_weight,
                layer.w13_bias,
                layer.w2_bias,
                layer.w13_weight_scale,
                layer.w2_weight_scale,
                topk_weights,
                topk_ids,
                global_scale1=None,
                global_scale2=None,
                quant_type_id=scalar_types.float4_e2m1f.id,
                apply_router_weight_on_input=layer.apply_router_weight_on_input,
                global_num_experts=layer.global_num_experts,
                activation=layer.activation,
                expert_map=layer.expert_map,
                input_dtype=self.marlin_input_dtype,
                inplace=not self.moe.disable_inplace,
            )

        assert _can_support_mxfp4(
            layer.use_grouped_topk,
            layer.topk_group,
            layer.num_expert_group,
            layer.expert_map,
            layer.custom_routing_function,
            layer.e_score_correction_bias,
            layer.apply_router_weight_on_input,
            layer.scoring_func,
            layer.activation,
            layer.eplb_state.expert_load_view,
            layer.eplb_state.logical_to_physical_map,
            layer.eplb_state.logical_replica_count,
        ), "MXFP4 are not supported with this configuration."

        assert (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
            or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
        )
        from vllm.utils.flashinfer import flashinfer_cutlass_fused_moe

        # Backend-specific preparation
        if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
            from flashinfer import mxfp8_quantize

            x_quant, x_scale = mxfp8_quantize(x, True, 32)

            fake_input_scale = torch.ones(self.num_experts, device=x.device)
            quant_scales = [
                layer.w13_weight_scale.contiguous().view(torch.int32),
                fake_input_scale,
                layer.w2_weight_scale.contiguous().view(torch.int32),
                fake_input_scale,
            ]

            fi_input = x_quant
            extra_kwargs = dict(
                use_mxfp8_act_scaling=True,
                input_sf=x_scale,
                fc1_expert_weights=layer.w13_weight.contiguous().view(torch.long),
                fc2_expert_weights=layer.w2_weight.contiguous().view(torch.long),
            )
        elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:
            assert x.dtype == torch.bfloat16

            quant_scales = [
                layer.w13_weight_scale,
                layer.w2_weight_scale,
            ]

            fi_input = x
            extra_kwargs = dict(
                use_w4_group_scaling=True,
                fc1_expert_weights=layer.w13_weight,
                fc2_expert_weights=layer.w2_weight,
            )

        output = torch.empty_like(x, dtype=torch.bfloat16)

        flashinfer_cutlass_fused_moe(
            input=fi_input,
            token_selected_experts=topk_ids.to(torch.int).contiguous(),
            token_final_scales=topk_weights,
            output_dtype=torch.bfloat16,
            output=output,
            quant_scales=quant_scales,
            fc1_expert_biases=layer.w13_bias,
            fc2_expert_biases=layer.w2_bias,
            swiglu_alpha=layer.gemm1_alpha,
            swiglu_beta=layer.gemm1_beta,
            swiglu_limit=layer.gemm1_clamp_limit,
            tp_size=self.moe.tp_size,
            tp_rank=self.moe.tp_rank,
            ep_size=self.moe.ep_size,
            ep_rank=self.moe.ep_rank,
            tune_max_num_tokens=max(self.max_capture_size, 1),
            **extra_kwargs,
        )

        return output

    def apply_monolithic(
        self,
        layer: FusedMoE,
        x: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        assert self.is_monolithic

        if layer.enable_eplb:
            raise NotImplementedError("EPLB is not supported for mxfp4")

        assert _can_support_mxfp4(
            layer.use_grouped_topk,
            layer.topk_group,
            layer.num_expert_group,
            layer.expert_map,
            layer.custom_routing_function,
            layer.e_score_correction_bias,
            layer.apply_router_weight_on_input,
            layer.scoring_func,
            layer.activation,
            layer.eplb_state.expert_load_view,
            layer.eplb_state.logical_to_physical_map,
            layer.eplb_state.logical_replica_count,
        ), "MXFP4 are not supported with this configuration."

        if (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
        ):
            from flashinfer import trtllm_fp4_block_scale_moe

            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16:
                assert x.dtype == torch.bfloat16
                x_quant = x
                x_scale = None
            elif self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM:
                from flashinfer import mxfp8_quantize

                x_quant, x_scale = mxfp8_quantize(x, False)  # to mxfp8
                x_scale = x_scale.view(torch.float8_e4m3fn).reshape(*x.shape[:-1], -1)

            trtllm_gen_output = trtllm_fp4_block_scale_moe(
                routing_logits=router_logits.to(torch.bfloat16),
                routing_bias=None,
                hidden_states=x_quant,
                hidden_states_scale=x_scale,
                gemm1_weights=layer.w13_weight,  # uint8 (e2m1 x 2)
                gemm1_weights_scale=layer.w13_weight_scale,  # uint8 (e4m3 x 2)
                gemm1_bias=layer.w13_bias,  # fp32 per expert per channel
                gemm1_alpha=layer.gemm1_alpha,  # fp32 per expert
                gemm1_beta=layer.gemm1_beta,  # fp32 per expert
                gemm1_clamp_limit=layer.gemm1_clamp_limit,  # fp32 per expert
                gemm2_weights=layer.w2_weight,  # uint8 (e2m1 x 2)
                gemm2_weights_scale=layer.w2_weight_scale,  # ue8m0
                gemm2_bias=layer.w2_bias,  # fp32 per expert per channel
                output1_scale_scalar=None,
                output1_scale_gate_scalar=None,
                output2_scale_scalar=None,
                num_experts=layer.global_num_experts,
                top_k=layer.top_k,
                n_group=None,
                topk_group=None,
                intermediate_size=self.intermediate_size,  # padded to multiple of 256
                local_expert_offset=layer.ep_rank * layer.local_num_experts,
                local_num_experts=self.num_experts,
                routed_scaling_factor=None,
                routing_method_type=1 if layer.renormalize else 0,
                do_finalize=True,
                tune_max_num_tokens=max(self.max_capture_size, 1),
            )[0]
            return trtllm_gen_output
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import (  # noqa: E501
                triton_kernel_moe_forward,
            )

            return triton_kernel_moe_forward(
                hidden_states=x,
                w1=layer.w13_weight,
                w2=layer.w2_weight,
                gating_output=router_logits,
                topk=layer.top_k,
                renormalize=layer.renormalize,
                global_num_experts=layer.global_num_experts,
                expert_map=layer.expert_map,
                quant_config=self.moe_quant_config,
                apply_router_weight_on_input=layer.apply_router_weight_on_input,
            )
        else:
            raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

get_mxfp4_backend_with_lora

get_mxfp4_backend_with_lora() -> Mxfp4Backend

Not all MXFP4 backends support LoRA. Select backends that are known to have LoRA support.

Source code in vllm/model_executor/layers/quantization/mxfp4.py
def get_mxfp4_backend_with_lora() -> Mxfp4Backend:
    """
    Not all MXFP4 backends support LoRA. Select backends that are known to
    have LoRA support.
    """
    if not current_platform.is_cuda():
        return Mxfp4Backend.NONE

    # If FlashInfer is not available, try either Marlin or Triton
    triton_kernels_supported = (
        has_triton_kernels()
        # NOTE: triton_kernels are only confirmed to work on SM90 and SM100
        # SM110 fails with this error: https://github.com/vllm-project/vllm/issues/29317
        # SM120 needs this fix: https://github.com/triton-lang/triton/pull/8498
        and (9, 0) <= current_platform.get_device_capability() < (11, 0)
    )
    if envs.VLLM_MXFP4_USE_MARLIN is False and triton_kernels_supported:
        logger.info_once("[get_mxfp4_backend_with_lora] Using Triton backend")
        return Mxfp4Backend.TRITON

    logger.info_once("[get_mxfp4_backend_with_lora] Using Marlin backend")
    return Mxfp4Backend.MARLIN