@input_guard
def solve_tril(
A: torch.Tensor,
cu_seqlens: torch.Tensor | None = None,
output_dtype: torch.dtype = torch.float,
) -> torch.Tensor:
"""
Compute the inverse of the matrix I + A
A should be strictly lower triangular, i.e., A.triu() == 0.
Args:
A (torch.Tensor):
[B, T, H, BT], where BT should only be 16, 32, or 64.
cu_seqlens (torch.Tensor):
The cumulative sequence lengths of the input tensor. Default: `None`.
output_dtype (torch.dtype):
The dtype of the output tensor. Default: `torch.float`.
If `None`, the output dtype will be the same as the input dtype.
Returns:
(I + A)^-1 with the same shape as A
"""
assert A.shape[-1] in [16, 32, 64]
output_dtype = A.dtype if output_dtype is None else output_dtype
B, T, H, BT = A.shape
chunk_indices = (
prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
)
NT = len(chunk_indices) if cu_seqlens is not None else triton.cdiv(T, BT)
Ai = torch.zeros_like(A, dtype=output_dtype)
if BT == 16:
merge_fn = solve_tril_16x16_kernel
elif BT == 32:
merge_fn = merge_16x16_to_32x32_inverse_kernel
elif BT == 64:
merge_fn = merge_16x16_to_64x64_inverse_kernel
merge_fn[NT, B * H](
A=A,
Ai=Ai,
cu_seqlens=cu_seqlens,
chunk_indices=chunk_indices,
T=T,
H=H,
BT=BT,
USE_TMA=is_tma_supported,
DOT_PRECISION=FLA_TRIL_PRECISION,
)
return Ai